Refine Your Search

Topic

Search Results

Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Journal Article

Allocation-Based Control with Actuator Dynamics for Four-Wheel Independently Actuated Electric Vehicles

2015-04-14
2015-01-0653
This paper proposes a novel allocation-based control method for four-wheel independently actuated electric vehicles. In the proposed method, both actuator dynamics and input/output constraints are fully taken into consideration in the control design. First, the actuators are modeled as first-order dynamic systems with delay. Then, the control allocation is formulated as an optimization problem, with the primary objective of minimizing errors between the actual and desired control outputs. Other objectives include minimizing the power consumption and the slew rate of the actuator outputs. As a result, this leads to frequency-dependent allocation that reflects the bandwidth of each actuator. To solve the optimization problem, an efficient numerical algorithm is employed. Finally the proposed control allocation method is implemented to control a four-wheel independently actuated electric vehicle.
Journal Article

Allocation-Based Fault Tolerant Control for Electric Vehicles with X-by-Wire

2014-04-01
2014-01-0866
This paper proposed a novel fault-tolerant control method based on control allocation via dynamic constrained optimization for electric vehicles with XBW systems. The total vehicle control command is first derived based on interpretation on driver's intention as a set of desired vehicle body forces, which is further dynamically distributed to the control command of each actuator among vehicle four corners. A dynamic constrained optimization method is proposed with the cost function set to be a linear combination of multiple control objectives, such that the control allocation problem is transformed into a linear programming formulation. An analytical yet explicit solution is then derived, which not only provides a systematic approach in handling the actuation faults, but also is efficient and real-time feasible for in-vehicle implementation. The simulation results show that the proposed method is valid and effective in maintaining vehicle operation as expected even with faults.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Fault-Tolerant Control of Brake-by-Wire Systems Based on Control Allocation

2016-04-05
2016-01-0132
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Journal Article

Integrated Longitudinal Vehicle Dynamics Control with Tire/Road Friction Estimation

2015-04-14
2015-01-0645
The longitudinal dynamics control is an essential task of vehicle dynamics control. In present, it is usually applied by adjusting the slip ratio of driving wheels to achieve satisfactory performances both in stability and accelerating ability. In order to improve its performances, the coordination of different subsystems such as engine, transmission and braking system has to be considered. In addition, the proposed algorithms usually adopt the threshold methods based on less road condition information for simpleness and quick response, which cannot achieve optimal performance on various road conditions. In this paper, an integrated longitudinal vehicle dynamics control algorithm with tire/road friction estimation was proposed. First, a road identification algorithm was designed to estimate tire forces of driving wheels and the friction coefficient by the method of Kalman Filter and Recursive Least Squares (RLS).
Technical Paper

Lidar Inertial Odometry and Mapping for Autonomous Vehicle in GPS-Denied Parking Lot

2020-04-14
2020-01-0103
High-precision and real-time ego-motion estimation is vital for autonomous vehicle. There is a lot GPS-denied maneuver such as underground parking lot in urban areas. Therefore, the localization system relying solely on GPS cannot meets the requirements. Recently, lidar odometry and visual odometry have been introduced into localization systems to overcome the problem of missing GPS signals. Compared with visual odometry, lidar odometry is not susceptible to light, which is widely applied in weak-light environments. Besides, the autonomous parking is highly dependent on the geometric information around the vehicle, which makes building map of surroundings essential for autonomous vehicle. We propose a lidar inertial odometry and mapping. By sensor fusion, we compensate for the drawback of applying a single sensor, allowing the system to provide a more accurate estimate.
Technical Paper

MPC-Based Trajectory Tracking Control for Intelligent Vehicles

2016-04-05
2016-01-0452
In this paper, a model predictive control (MPC) based trajectory tracking scheme utilizing steering wheel and braking or acceleration pedal is proposed for intelligent vehicles. The control objective is to track a desired trajectory which is obtained from the trajectory planner. The proposed control is based on a simplified third-order vehicle model, which consists of longitudinal vehicle dynamics along with a commonly used bicycle model. A nonlinear model predictive control (NMPC) is adopted in order to follow a given path by controlling front steering, braking and traction, while fulfilling various physical and design constraints. In order to reduce the computational burden, the NMPC is converted to a linear time-varying (LTV) MPC based on successive online linearization of the nonlinear system model. Two different test conditions have been used to verify the effectiveness of the proposed approaches through simulations using Matlab and CarSim.
Technical Paper

Modelling and Validation for an Electro-Hydraulic Braking System Equipped with the Electro-Mechanical Booster

2018-04-03
2018-01-0828
The intelligent and electric vehicles are the future of vehicle technique. The development of intelligent and electric vehicles also promotes new requirements to many traditional chassis subsystems, including traditional braking system equipped with vacuum boosters. The Electro-Mechanical Booster is an applicable substitute of traditional vacuum booster for future intelligent and electric vehicles. It is independent of engine vacuum source, and can be combined with electric regenerative braking. A complete system model is necessary for system analysis and algorithm developing. For this purpose, the modeling of electro-hydraulic braking system is necessary. In this paper, a detailed electro-hydraulic braking system model is studied. The system consists of an electro-mechanical booster and hydraulic braking system. The electro-mechanical booster which mainly contains a permanent magnet synchronous motor (PMSM) and a set of transmission mechanism is the critical component.
Technical Paper

Nonlinear Control of Vehicle Chassis Planar Stability Based on T-S Fuzzy Model

2016-04-05
2016-01-0471
In the past decades, the stability of vehicles has been improved significantly by use of variety of chassis control systems such as Antilock Braking System (ABS), Electric Stability Program (ESP) and Active Front Steering (AFS). Recently, in order to further improve the performance of vehicles, more and more researches are focused on the integration control of multiple degrees of freedom of vehicle dynamic. However, in order to control multiple degrees of freedom simultaneously, the nonlinear problems caused by the coupling between different degrees of freedom have to be solved, which is always a difficult task. In this paper, a three-degrees-of-freedom single track vehicle model, in which some nonlinear terms are considered, is built firstly. Then, the nonlinear model is processed by the fuzzy technique and the T-S fuzzy model is designed.
Technical Paper

Real-Time Automatic Test of AEB with Brake System in the Loop

2018-04-03
2018-01-1450
The limitation of drivers' attention and perception may bring collision dangers, Autonomous Emergency Braking (AEB) can help drivers to avoid the potential collisions through active braking. Since the positive effect of it, motor corporations have begun to equip their vehicles with the system, and regulatory agencies in various countries have introduced test standards. At this stage, the actuator of AEB usually adopts Electronic Stability Program (ESP), but it poor performance of continuous working period and active pressure built-up for all wheels limits its implements. Electromechanical brake booster can realize power assisted brake without relying on the vacuum source and a variety of specific power curves. Moreover it can achieve the active braking with a rapid response, which make it can fulfill requirements of automotive electric and intelligent development.
Technical Paper

Recognition and Classification of Vehicle Target Using the Vehicle-Mounted Velodyne LIDAR

2014-04-01
2014-01-0322
This paper describes a novel recognition and classification method of vehicle targets in urban road based on a vehicle-mounted Velodyne HDL64E light detection and ranging (LIDAR) system. The autonomous vehicle will choose different driving strategy according to the surrounding traffic environments to guarantee that the driving is safe, stable and efficient. It is helpful for controller to provide the efficient stagey to know the exact type of vehicle around. So this method concentrates on reorganization and classification the type of vehicle targets so that the controller can provide a safe and efficient driving strategy for autonomous ground vehicles. The approach is targeted at high-speed ground vehicle, so real-time performance of the method plays a critical role. In order to improve the real-time performance, some methods of data preprocessing should be taken to simplify the large-size long-range 3D point clouds.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Technical Paper

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster

2020-04-14
2020-01-0212
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm.
X