Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development and Validation of Control Algorithm for Series Hybrid Power Train

2003-10-27
2003-01-3281
Developed control algorithm for series hybrid electric power train is presented systematically, which keeps engine operation points on the locus of highest efficiency torque/speed points using a lookup table defined by engine power and speed. The off-line simulation model of series hybrid power train is developed which includes sub-models of control system and controlled objective (such as engine, motor, battery pack and so on). The debug and validation of control algorithm is performed on developed modular test facility. The results show that developed control algorithm can effectively keep engine operating on the locus of high efficiency points and much more fuel economy can be achieved than that of conventional ICE power train, meanwhile battery SOC can be maintained within reasonable level without charging outside during cycles.
Technical Paper

Improvements on the Start Performance of Diesel Engine by Fuel Control Strategy Optimization and Heating Measures

2008-06-23
2008-01-1646
The incomplete combustion and misfire of diesel engine during starting result in unwanted white smoke. The histories of combustion and emission in different phases under different start conditions were studied in this paper. The optimization of the fuel injection control strategy under start conditions was performed. When the diesel engine is started under low temperature, the control strategy adapted to start the engine with a certain constant fuel mass injected per cycle, there may be misfire cycles in the initial period or in the transitional process, which is mainly caused by the mismatch between the fuel mass injected per cycle and the instantaneous engine speed. Therefore, an optimized control strategy was put forward, namely, the engine starts with high fuel mass injection in the first several cycles and then decreases step by step during the transitional period until it operates at idle condition. This strategy was validated to decrease significantly the misfire cycles.
Technical Paper

Numerical Simulation of Two-Phase Flow in the Second Header of MAC Condenser

2019-04-02
2019-01-1065
Phase separation circuiting have been proved in the past to effectively improve the performance of mobile air conditioning (MAC) condensers. In the vertical second header of the condenser, liquid separates from vapor mainly due to gravity, leaving vapor-rich flow with higher heat transfer coefficient to go into the upper passes. The condenser effectiveness is improved in this way. However, separation is usually not perfect, expressed through the separation efficiency (ηl and ηv). This paper presents the numerical study of phase separation phenomena in the second header. The Euler-Euler method of Computational Fluid Dynamics (CFD) is used. Simulations are conducted for two-phase refrigerant R-134a for MAC application. Inlet mass flow rate is simulated at values of 16 g∙s-1, 20 g∙s-1, and 30 g∙s-1 for 21 inlet microchannel tubes, which is the same 1st-pass tube number as of a real separation condenser. Corresponding mass fluxes are 166 kg∙m-2∙s-1, 207 kg∙m-2∙s-1, and 311 kg∙m-2∙s-1.
Technical Paper

Parametric Design of Hybrid Power-train with ISG for Transit Bus

2004-10-25
2004-01-3065
In concept design and prototype development of hybrid power train with ISG (Integration of Starter and Generator) for transit bus one of the main concerns is to determine the appropriate parameters of power train components. Utilizing the developed off-line simulation model of hybrid power train with ISG the study on the influence of components' parameters on acceleration performance and fuel economy of transit bus is completed. Based on these the guideline strategies of parametric design of parallel hybrid power train for transit bus are brought forward in this paper. Given the condition of propulsion requirement the parametric design for this transit bus is performed targeting minimizing fuel consumption. It is conclusion that the appropriate components' parameters determined by means of parametric design can make hybrid transit bus with ISG achieve much better acceleration performance and much lower fuel equivalent consumption than that of baseline transit bus.
Technical Paper

Phase Separation in Second Header of MAC Condenser

2015-04-14
2015-01-1694
This paper presents results of the visualization of the separation in the vertical header of the automotive condenser. A prototype of a heat exchanger was made that has inlet in the middle of the header, with 21 microchannel tubes as the first pass. In the second header liquid separates and leaves through 4 microchannel tubes beneath while mostly vapor leaves through 11 microchannel tubes on the top as another exit. That way the 2nd pass has liquid below first pass and vapor above it. R134a was used in the tests. Mass flow at the inlet to the header was in the range 8.4 - 30 g/s (mass flux of 54 kg/m2·s-193 kg/m2·s) and quality at the inlet to second header was varied over a range of 0.05 to 0.25, to see their impact on the separation of two-phase flow inside the transparent header. Visualization was performed to better understand and define the physical parameters that dominate the separation phenomena.
Technical Paper

Study on the Control Algorithm of Series Power Train for Fuel Cell Transit Bus

2004-10-26
2004-01-2607
Developed control algorithm of series power train for fuel cell transit bus is presented systematically, which keeps fuel cell pack's operation points on the locus of highest efficiency. The off-line simulation model of series power train for fuel cell transit bus is developed which includes sub-models of control system and controlled objective (such as fuel cell pack, motor, battery pack and so on). The debug and validation of control algorithm is performed on developed modular test facility. The results show that developed control algorithm can effectively keep fuel cell pack's operating on the locus of high efficiency points and much more fuel economy can be achieved than that of conventional ICE power train, meanwhile battery SOC can be maintained within reasonable level without charging outside during cycles.
Technical Paper

The Analysis of Phase Separation in Vertical Headers of Microchannel HEs

2016-04-05
2016-01-0253
This paper presents the experimental analysis of separation in vertical headers based on flow visualization. Two-phase separation phenomena inside the header is observed and quantified. Driving forces are analyzed to study the mechanisms for two-phase flow motion and flow regimes. Main tube of the header is made of clear PVC for visualization study. R-134a is used as the fluid of interest and the mass flux from the inlet pass is 55 kg/m2s - 195 kg/m2s. Potential ways to improve two-phase separation are discussed. A model is built to show how separation brings potential benefits to MAC heat exchangers by arranging the flow path.
Technical Paper

Vehicle Cycle Analysis Comparison of Battery Electric Vehicle and Conventional Vehicle in China

2013-10-14
2013-01-2581
The encouragement for the development of battery electric vehicles (BEVs) has increased in China, especially after the automotive industry planning in 2009. In general, BEVs are associated with a cleaner and more efficient mobility during operation; however the benefits of substituting BEVs for internal combustion engine vehicles (ICEVs) must be evaluated. Vehicle cycle analyses are important tools that provide a comprehensive approach to compare the environmental effects of advanced and conventional vehicles. The goal of this study is to estimate and compare the vehicle cycle energy and emission impacts of a mid-size passenger BEV with a mid-size passenger ICEV in China. It is found that the material production accounts for the majority of the vehicle cycle energy consumption and emissions for the two vehicle types.
X