Refine Your Search

Search Results

Technical Paper

Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods

1993-03-01
930921
The injection rate signals from a commercial diesel fuel injection system, based on a distributor pump driven by a DC motor, were characterised independently and consecutively by two injection rate meters based on the Zeuch and Bosch methods. The signals were first analysed in terms of their shot-to-shot variations over 64 consecutive injections and the correlations between needle lift and injection rate over a range of pump speeds and loads quantified by Fast Fourier Transform. A direct comparison of the injection rate signals on a cycle-resolved basis was achieved by connecting two consecutive injectors from the pump-line-nozzle injection system to a Bosch- and a Zeuch-based injection rate meters. The signals were acquired over a large number of injections in terms of mean and rms of the injected quantity, mean injection rate, maximum injection rate, average cumulative fuel injected and average injection duration.
Technical Paper

Analysis of the Flow in the Nozzle of a Vertical Multi-Hole Diesel Engine Injector

1998-02-23
980811
An enlarged transparent model of a six-hole vertical diesel injector has been manufactured in order to allow flow measurements inside the sac volume and the injection holes to be obtained using a combination of laser Doppler velocimetry (LDV) and the refractive index matching technique under steady state conditions. The measurement points were concentrated in the sac volume close to the entrance of the injection holes as well as inside them on a vertical plane passing through the axis of two injection holes for two different needle lifts. The velocity flow field was characterized in terms of the mean velocity and the turbulent intensity. The results revealed that, under certain conditions, cavitation may occur in the recirculation zone formed at the entrance to the hole since the pressure in this region can reach the value of the vapor pressure of the flowing liquid; this was found to strongly depend on the needle lift and eccentricity.
Technical Paper

Application of a FIE Computer Model to an In-Line Pump-Based Injection System for Diesel Engines

1997-02-24
970348
A computer model simulating the flow in fuel injection systems has been used in order to investigate the fuel injection processes in an in-line pump-based fuel injection system for direct-injection diesel engines. The model is one-dimensional and it is based on the mass and momentum conservation equations for the simulation of the fuel flow and on the equilibrium of forces for the simulation of the mechanical movements of the valves present in the system. The fuel injection system tested comprised an in-line pump whose characteristics were examined by using as input the measured line pressure signal and by modeling the pump operation itself as well as the fuel flow through single- and two-stage injectors. For the validation of the model, extensive comparison with experimental data has been performed for a wide range of pump operating conditions.
Technical Paper

Cavitation Initiation, Its Development and Link with Flow Turbulence in Diesel Injector Nozzles

2002-03-04
2002-01-0214
The initiation and development of cavitation in enlarged transparent acrylic models of six-hole nozzles for direct injection Diesel engines has been visualised by a high-speed digital video camera in a purpose-built refractive index matching test rig. The obtained high temporal resolution images have allowed improved understanding of the origin of the cavitation structures in Diesel injector nozzles and clarification of the effect of sac geometry (conical mini-sac vs. VCO) on cavitation initiation and development in the nozzle holes. The link between cavitation and flow turbulence in the sac volume and, more importantly, in the injection holes has been quantified through measurements of the flow by laser Doppler velocimetry (LDV) at a number of planes as a function of the Reynolds and cavitation numbers.
Technical Paper

Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles

2000-03-06
2000-01-1249
A production six-hole conical sac-type nozzle incorporating a quartz window in one of the injection holes has been used in order to visualize the flow under cavitating flow conditions. Simultaneous variation of both the injection and the back chamber pressures allowed images to be obtained at various cavitation and Reynolds numbers for two different fixed needle lifts corresponding to the first- and the second-stage lift of two-stage injectors. The flow visualization system was based on a fast and high resolution CCD camera equipped with high magnification lenses which allowed details of the various flow regimes formed inside the injection hole to be identified. From the obtained images both hole cavitation initiated at the top inlet corner of the hole as well as string cavitation formed inside the sac volume and entering into the hole from the bottom corner, were identified to occur at different cavitation and Reynolds numbers.
Technical Paper

Computer Simulation of Fuel Injection Systems for DI Diesel Engines

1992-10-01
922223
The continuity and momentum equations for a pump-pipe-nozzle fuel injection system have been solved by a computer simulation program employing both the Runge-Kutta method and the more widely used method of characteristics. This allows the prediction of fluid phenomena and the dynamics of the mechanical components based on the geometry of the FIE system. The simulation includes the effects of possible cavitation, system leakage as well as variations in fuel density and bulk modulus. The computer model has been made as flexible as possible by using a modular format and inputting the system parameters from external files or dialog boxes. Experimentation was done on a Bosch VE type distributor pump supplying a multi-hole type nozzle which allowed preliminary evaluation of the model by comparing the predicted and measured injection rates and line pressures over a range of pump speeds and loads.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

1998-02-01
981186
Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.
Technical Paper

Effect of Inlet Parameters on the Flow Characteristics in a Four-Stroke Model Engine

1982-02-01
820750
The flow structure in a four-stroke model engine motored at 200 rpm with a compression ratio of 3.5 has been investigated. Ensemble-averaged axial and swirl mean and rms velocities have been obtained by laser-Doppler anemometry downstream of an axisymmetrically located single valve with 30 and 60 degree seat angles and various lifts, with and without induction swirl. In all cases, the intake-generated flow structure in the axial plane disappears by the time the inlet valve closes and results in nearly homogeneous turbulence during compression with levels of 0.5–0.7 times the mean piston speed. The swirling flow, however, which is induced by means of vanes, persists through the compression stroke, evolving from a spiralling motion early during intake into solid body type of rotation near TDC of compression, with associated swirl ratios increasing with valve lift.
Technical Paper

Effect of Multi-Injection Strategy on Cavitation Development in Diesel Injector Nozzle Holes

2005-04-11
2005-01-1237
The effect of multiple-injection strategy on nozzle hole cavitation has been investigated both experimentally and numerically. A common-rail Diesel injection system, used by Toyota in passenger car engines, has been employed together with a double-shutter CCD camera in order to visualise cavitation inside a submerged and optically accessible (in one out of the six holes) real-size VCO nozzle. Initially the cavitation development was investigated in single injection events followed by flow images obtained during multiple injections consisting of a pilot and a main injection pulse. In order to identify the effect of pilot injection on cavitation development during the main injection, the dwell time between the injection events was varied between 1.5-5ms for different pilot injection quantities. The extensive test matrix included injection pressures of 400 and 800bar and back pressures ranging from 2.4 up to 41bar.
Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

1995-02-01
950078
A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

Evaluation of the Predictive Capability of Diesel Nozzle Cavitation Models

2007-04-16
2007-01-0245
The predictive capability of Lagrangian and Eulerian multi-dimensional computational fluid dynamics models accounting for the onset and development of cavitation inside Diesel nozzle holes is assessed against experimental data. These include cavitation images available from a real-size six-hole mini-sac nozzle incorporating a transparent window as well as high-speed/CCD images and LDV measurements of the liquid velocity inside an identical large-scale fully transparent nozzle replica. Results are available for different cavitation numbers, which correspond to different cavitation regimes forming inside the injection hole. Discharge coefficient measurements for various real-size nozzles operating under realistic injection pressures are also compared and match well with models' predictions.
Technical Paper

Flow, Combustion and Emissions in a Five-Valve Research Gasoline Engine

2001-09-24
2001-01-3556
The in-cylinder flow, mixture distribution, combustion and exhaust emissions in a research, five-valve purpose-built gasoline engine are discussed on the basis of measurements obtained using laser Doppler velocimetry (LDV), fast spark-plug hydrocarbon sampling, flame imaging and NOx/HC emissions using fast chemiluminescent and flame ionisation detectors/analysers. These measurements have been complemented by steady flow testing of various cylinder head configurations, involving single- and three-valve operation, in terms of flow capacity and in-cylinder tumble strength.
Journal Article

Fuel Film Behavior Analysis Using Simulated Intake Port

2009-11-03
2009-32-0129
Transient behavior of the engine is one of the most crucial factors for motorcycle features. Characterization of the fuel film with port fuel injection (PFI) is necessary to enhance this feature with keeping others, such as high output, low emissions and good fuel consumption. In order to resolve the complicated phenomena in real engine condition into simple physical issues, a simulated intake port was used in our research with Laser Induced Fluorescence (LIF) technique to allow accurate measurement of the fuel film thickness, complemented by visualization of the film development and spray behavior using high-speed video imaging. Useful results have been conducted from the parametric studies with various sets of conditions, such as injection quantity, air velocity and port backpressure.
Technical Paper

Internal Flow and Cavitation in a Multi-Hole Injector for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1405
A transparent enlarged model of a six-hole injector used in the development of emerging gasoline direct-injection engines was manufactured with full optical access. The working fluid was water circulating through the injector nozzle under steady-state flow conditions at different flow rates, pressures and needle positions. Simultaneous matching of the Reynolds and cavitation numbers has allowed direct comparison between the cavitation regimes present in real-size and enlarged nozzles. The experimental results from the model injector, as part of a research programme into second-generation direct-injection spark-ignition engines, are presented and discussed. The main objective of this investigation was to characterise the cavitation process in the sac volume and nozzle holes under different operating conditions. This has been achieved by visualizing the nozzle cavitation structures in two planes simultaneously using two synchronised high-speed cameras.
Technical Paper

Internal Flow and Spray Characteristics of Pintle-Type Outwards Opening Piezo Injectors for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1406
The near nozzle exit flow and spray structure generated by an enlarged model of a second generation pintle type outwards opening injector have been investigated under steady flow conditions as a function of flow-rate and needle lift. A high resolution CCD camera and high-speed video camera have been employed in this study to obtain high-magnification images of the internal nozzle exit flow in order to identify the origin of string ligaments/droplets formation at the nozzle exit. The images of the flow around the nozzle seat area showed clearly that air was entrained from outside into the nozzle seat area under certain flow operating conditions (low cavitation number, CN); the formed air pockets inside the annular nozzle proved to be the main cause of the breaking of the fuel liquid film into strings as it emerged from the nozzle with a structure consisting of alternating thin and thick liquid filaments.
Technical Paper

Investigation of Cavitation in a Vertical Multi-Hole Injector

1999-03-01
1999-01-0524
An enlarged transparent model of a six-hole vertical diesel injector has been used to allow visualization of the flow at Reynolds and cavitation numbers matching those of real size injectors operating under normal Diesel engine conditions. The visualization system comprised a CCD camera, high-magnification lenses and a spark light source which allowed high-resolution images to be obtained. The flow conditions examined in terms of flow rates and pressures covered the range from low to full load of the real size injector while the needle lift position corresponded to that of full lift of the first- and second- stage in two-stage injectors. In addition, different values of needle eccentricity were tested in order to examine its effect on the cavitation structures within the injection holes.
Technical Paper

Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine Using LIF

1998-10-19
982435
A laser-induced fluorescence (LIF) system has been developed to obtain measurements of the instantaneous lubricant film thickness in the piston-cylinder assembly of a firing single-cylinder, direct-injection diesel engine. Measurements were made at top-dead-centre (TDC), mid-stroke and bottom-dead-centre (BDC) position by means of three fibre optic probes inserted into the cylinder liner and mounted flush with its surface. Following extensive repeatability tests, the cycle-averaged lubricant film thickness was estimated for different multi-grade oils as a function of engine speed, load and temperature. The results quantified the dependence of the film thickness ahead, under and behind the piston rings on oil chemistry and viscometric properties, thus confirming the important role of the LIF technique in the development and formulation of new engine oils.
Technical Paper

Mixed Lubrication Modelling of Newtonian and Shear Thinning Liquids in a Piston-Ring Configuration

1997-10-01
972924
Mixed-lubrication models comprising of Patir and Cheng's [1,2] average Reynolds equation and Greenwood and Tripp's [3] asperity interaction formulations have hitherto been widely used in predicting piston-ring performance. In this paper a number of models have been developed to allow mixed-lubrication of both Newtonian and shear thinning fluids to be simulated. Lubricating action usually involves two anisotropic solid surfaces of statistically different profiles. Various forms of the average Reynolds equation and the asperity interaction models require parameters representing the composite surface roughness and profile parameters at the contact. Here a strategy for determining these equivalent composite parameters is presented. Mathematical simulations indicate that when the composite RMS and composite summit RMS roughness of the contact approach the same value, the performance of the mix-lubrication model becomes dominated by the asperity interaction formulation.
Technical Paper

Mixture Formation and Combustion in the Dl Diesel Engine

1997-08-06
972681
The diesel engine is the most efficient user of fossil fuels for vehicle propulsion and seems to best fulfill the requirements of the future. It is for this reason that Volkswagen has initiated a very broad research programme for diesels. The purpose of this paper is to build a bridge between fundamental research and technical developments which could allow evaluation of the prospects of direct- injection diesels as powerplants of choice for passenger cars in the turn of the century. The current knowledge on mixture formation, combustion and pollutant formation in diesel engines is presented and discussed with special emphasis given to the concept of the direct-injection diesel engine.
Technical Paper

Modeling of Advanced High-Pressure Fuel Injection Systems for Passenger Car Diesel Engines

1999-03-01
1999-01-0910
A one-dimensional, transient and compressible flow model was used in order to simulate the flow and pressure distribution in advanced high-pressure fuel injection systems; these include electronic distributor-type pumps with either axial or radial plungers and a common-rail system. Experimental data for the line pressure, needle lift, injection rate and total fuel injection quantity obtained over a wide range of operating conditions (from idle to high speed/full load) were used to validate the model. The FIE system used for validation comprised an electronic high-pressure pump connected to two-stage injectors of different type including 6-hole vertical and 5-hole inclined conical-sac and VCO nozzles.
X