Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Lean Burn Gasoline Fueled Pre-Chamber Jet Ignition Combustion System Achieving High Efficiency and Low NOx at Part Load

2012-04-16
2012-01-1146
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. Demonstrated benefits include ultra lean operation (λ≻2) at part load and high load knock limit extension. Previous jet ignition experimental results have highlighted high thermal efficiencies, high load capability and near-zero engine-out NOx emissions in a standard contemporary engine platform. Although previous results of this system have been very promising, the main hurdle has been the need for a dual fuel system, with liquid gasoline used in the main combustion chamber and small fractions of gaseous propane in the pre-chamber.
Technical Paper

A New Combustion System Achieving High Drive Cycle Fuel Economy Improvements in a Modern Vehicle Powertrain

2011-04-12
2011-01-0664
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition results from the partially combusted (reacting) pre-chamber products initiating combustion in the main chamber. The distributed ignition sites enable relatively small flame travel distances enabling short combustion durations and high burn rates. Multiple benefits include extending the knock limit and initiating combustion in very dilute mixtures (excess air and or EGR), with dilution levels being comparable to other low temperature combustion technologies (HCCI), without the complex control drawbacks.
Journal Article

A Normally Aspirated Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions in a Modern Vehicle Powertrain

2010-10-25
2010-01-2196
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition system results from the partially combusted (reacting) prechamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (HCCI) without the complex control drawbacks.
Journal Article

A Single Fuel Pre-Chamber Jet Ignition Powertrain Achieving High Load, High Efficiency and Near Zero NOx Emissions

2011-08-30
2011-01-2023
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition results from the partially combusted (reacting) pre-chamber products initiating combustion in the main chamber. The distributed ignition sites enable relatively small flame travel distances enabling short combustion durations and high burn rates. Multiple benefits include extending the knock limit and initiating combustion in very dilute mixtures (excess air and/or EGR), with dilution levels being comparable to other low temperature combustion technologies (HCCI), without the complex control drawbacks.
Journal Article

A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain

2010-05-05
2010-01-1457
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design overcomes previous packaging obstacles by simply replacing the spark plug in a modern four-valve, pent roof spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (homogeneous charge compression ignition - HCCI) without the complex control drawbacks.
Technical Paper

Abnormal Combustion including Mega Knock in a 60% Downsized Highly Turbocharged PFI Engine

2010-05-05
2010-01-1456
This paper provides insight into abnormal combustion events observed during engine development of a highly turbocharged downsized engine configuration. The results and findings in this paper may contribute to the understanding of problems in small downsized engines which are becoming more common in the search for reduced fuel consumption. These problems are combustion limitations at high manifold pressures and compression ratios as designers and engineers endeavor to further reduce engine capacities. Abnormal combustion effects, analysis and development efforts are described for the 0.43 liter test engine, which was fitted with a port fuel injection fuel delivery system. The inline two cylinder engine used in experiments was specifically designed, constructed and developed to enable 25 bar BMEP and 60 kW of brake power to be reliably achieved while operating on pump gasoline.
Technical Paper

Combustion System Development and Analysis of a Carbureted and PFI Normally Aspirated Small Engine

2010-09-28
2010-32-0095
This paper focuses on the combustion system development and combustion analysis results for a normally aspirated 0.43-liter small engine. The inline two-cylinder engine used in experiments has been tested in a variety of normally aspirated modes, using 98-RON pump gasoline. Test modes were defined by alterations to the induction system, which included carburetion and port fuel injection fuel delivery systems. The results from this paper provide some insight into the combustion effects for small cylinder normally aspirated spark ignition engines. This information provides future direction for the development of smaller engines as oil prices fluctuate and CO₂ emissions begin to be regulated. Small engine combustion is explored with a number of parametric studies, including a range of manifold absolute pressures up to wide open throttle, engine speeds exceeding 10,000 rev/min and compression ratios ranging from 9 to 13.
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Journal Article

Flame Kernel Development for a Spark Initiated Pre-Chamber Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions

2010-10-25
2010-01-2260
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition system results from the partially combusted (reacting) pre-chamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (HCCI) without the complex control drawbacks.
Journal Article

Ignition Energy Development for a Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions

2010-09-28
2010-32-0088
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This type of ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high-energy ignition system results from the partially combusted (reacting) pre-chamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low-temperature combustion technologies (HCCI) without the complex control drawbacks. Previous Turbulent Jet Ignition experimental results have highlighted peak net indicated thermal efficiency values of 42% in a standard modern engine platform.
Technical Paper

Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization

2012-04-16
2012-01-0823
Natural gas is a promising alternative fuel as it is affordable, available worldwide, has high knock resistance and low carbon content. This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas at several air to fuel ratios and speed-load operating points. In addition, Turbulent Jet Ignition optical images are compared to the baseline spark ignition images at the world-wide mapping point (1500 rev/min, 3.3 bar IMEPn) in order to provide insight into the relatively unknown phenomenon of Turbulent Jet Ignition combustion. Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
X