Refine Your Search

Topic

Search Results

Technical Paper

A Computational Study of the Lubricant Transport into Oil Control Ring Groove

2019-12-19
2019-01-2362
Lubricant transport into an oil control ring (OCR) groove through the clearance between the lower flank of the OCR and the groove was studied. A primary driving force of such lubricant transport is a dynamic pressure on the outer end of the clearance. The magnitude of the pressure depends on the flow pattern in the skirt chamfer region. Computational Fluid Dynamics (CFD) was employed to simulate the multiphase flow involving lubricant and gas in a skirt chamfer region. A correlation to predict the dynamic pressure was proposed and validated. The amount of lubricant transport into an OCR groove was found remarkable in a high-speed full-load condition.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Technical Paper

A One-Line Correlation for Predicting Oil Vaporization from Liner for IC Engines

2018-04-03
2018-01-0162
The increasingly stringent regulations for fuel economy and emissions require better optimization and control of oil consumption. One of the primary mechanisms of oil consumption is vaporization from the liner; we consider this as the “minimum oil consumption (MOC).” This paper presents a physical-mathematical cycle model for predicting the MOC. The numerical simulations suggest that the MOC is markedly sensitive to oil volatility, liner temperature, engine load and speed but less sensitive to oil film thickness. A one-line correlation is proposed for quick MOC estimations. It is shown to have <15% error compared to the cycle MOC computation. In the “dry region” (between top ring and OCR at the TDC), oil is depleted due to high heat and continual exposure to the combustion chamber.
Technical Paper

An Experimental Study of Oil Transport between the Piston Ring Pack and Cylinder Liner

2005-10-24
2005-01-3823
The paper presents a detailed study of a unique lubricating oil transport and exchange path that is important for friction, wear, and oil consumption in a 4 stroke spark ignition engine, namely the oil flow from the piston to the cylinder liner. The study consisted of experiments with a test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling. The effects of engine speed, load, and oil ring design were included as part of the research. The test conditions ranged from 800 RPM to 4500 RPM, while the load was varied from closed throttle to wide open throttle. Several different oil control ring designs were utilized, including U-Flex, Twin-Land, and 3-Piece. Oil transport and exchange from the piston to the liner was observed under several different engine conditions, typically moderate to high engine speeds and low loads.
Technical Paper

An Experimental Study of Oil Transport on the Piston Third Land and the Effects of Piston and Ring Designs

2004-06-08
2004-01-1934
Faced with increasing concern for lubricating oil consumption and engine friction, it is critical to understand the oil transport mechanisms in the power cylinder system. Lubricating oil travels through distinct regions along the piston ring pack before being consumed in the combustion chamber, with the oil distribution and dominant driving forces varying substantially for each of these regions. In this work, the focus is on the lowest region in the piston ring pack, namely the third land, which is located between the second compression ring and the oil control ring. A detailed 2D LIF (Two Dimensional Laser Induced Fluorescence) study has been performed on the oil distribution and flow patterns of the third land throughout the entire cycle of a single cylinder spark ignition engine. The impact of speed and load were experimentally observed with the LIF generated real time high-resolution images, as were changes in piston and ring design.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

An Experimental Study of the Time Scales and Controlling Factors Affecting Drastic Blow-by Increases during Transient Load Changes in SI Engines

2008-04-14
2008-01-0794
This paper presents the follow up to previous work done by Przesmitzki and Tian [1] studying large increases in blow-by in a spark ignition engine during transient load changes. This study examines the sensitivity of such blow-by spikes to differing intake pressures, and the time spent under both high and low intake pressure. The study consisted of experiments with a single cylinder test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling to explain certain phenomenon observed during the experiments. The previous work found that a very large blow-by spike could occur upon a transition from low engine load to a high engine load. The hypothesis was the top ring groove was being filled with oil during low engine load. Thereafter, it was hypothesized a transition to high load resulted in radial collapse of the top ring, and the subsequent blow by spike.
Technical Paper

An Experimental and Theoretical Study of the Contribution of Oil Evaporation to Oil Consumption

2002-10-21
2002-01-2684
Engine oil consumption is an important source of hydrocarbon and particulate emissions in automotive engines. Oil evaporating from the piston-ring-liner system is believed to contribute significantly to total oil consumption, especially during severe operating conditions. This paper presents an extensive experimental and theoretical study on the contribution of oil evaporation to total oil consumption at different steady state speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on coolant outlet temperature, oil volatility, and operating speed and load in a production spark ignition engine. Liquid oil distribution on the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder variables for oil evaporation, such as liner temperature and cylinder pressure, were measured. A multi-species cylinder liner oil evaporation model was developed to interpret the oil consumption data.
Technical Paper

An Investigation of the Cylinder Wall Oil Film Development During Warm-Up of An SI Engine Using Laser-Induced Fluorescence

1997-05-01
971699
The single-point LIF-measurement technique has been applied to a four-cylinder spark-ignition production engine for investigation of the oil film layer between the piston, piston rings and the cylinder wall. The lubrication process was studied during engine warm-up and it was found that a scaling law could be successfully used. This scaling law enables simple scaling of the oil film thickness of the compression ring, scraper ring and on the liner during warm-up, assuming the oil film thickness and cylinder liner temperature are known for the steady-state operating condition. Thereby the value of traditional measured steady-state lubrication data is enhanced.
Technical Paper

Analysis of Oil Consumption Behavior during Ramp Transients in a Production Spark Ignition Engine

2001-09-24
2001-01-3544
Engine oil consumption is recognized to be a significant source of pollutant emissions. Unburned or partially burned oil in the exhaust gases contributes directly to hydrocarbon and particulate emissions. In addition, chemical compounds present in oil additives poison catalytic converters and reduce their conversion efficiency. Oil consumption can increase significantly during critical non-steady operating conditions. This study analyzes the oil consumption behavior during ramp transients in load by combining oil consumption measurements, in-cylinder measurements, and computer-based modeling. A sulfur based oil consumption method was used to measure real-time oil consumption during ramp transients in load at constant speed in a production spark ignition engine. Additionally in-cylinder liquid oil behavior along the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique.
Technical Paper

Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions from Spark-Ignition Engines

1997-10-01
972892
A research program designed to measure the contribution from fuel absorption in the thin layer of oil, lubricating the cylinder liner, to the total and speciated HC emissions from a spark ignition engine has been performed. The logic of the experiment design was to test the oil layer mechanism via variations in the oil layer thickness (through the lubricant formulations), solubility of the fuel components in the lubricants, and variations in the crankcase gas phase HC concentration (through crankcase purging). A set of preliminary experiments were carried out to determine the solubility and diffusivity of the fuel components in the individual lubricants. Engine tests showed similar HC emissions among the tested lubricants. No consistent increase was observed with oil viscosity (oil film thickness), contrary to what would be expected if fuel-oil absorption was contributing significantly to engine-out HC. Similarly, no effect of crankcase purging could be observed.
Technical Paper

Development and Applications of an Analytical Tool for Piston Ring Design

2003-10-27
2003-01-3112
A comprehensive and robust analytical tool was developed to study three-dimensional (3D) ring-bore and ring-groove interactions for piston rings with either symmetric or asymmetric cross-section. The structural response of the ring is modeled with 3D finite element beam method, and the interfaces between the ring and the bore as well as between the ring and the groove are modeled with a simple asperity contact model. Given the ring free shape and the geometry of the cross-section, this analytical tool can be used to evaluate the ring-bore and ring-groove conformability as well as ring twist angle distribution under different constraints. Conversely, this tool can be used to calculate the free shape to provide the desired ring-bore contact pressure distribution for specific applications.
Technical Paper

Development of a High Speed Laser Induced Fluorescence (HSLIF) System in a Single Cylinder Engine for Oil Transport Studies

2016-04-05
2016-01-0642
Understanding oil transport mechanisms is critical to developing better tools for oil consumption and piston skirt lubrication [1]. Our existing Two-Dimensional Laser Induced Fluorescence (2DLIF) system with an acquisition rate of 1 frame every one or two cycles was proven to be effective to display oil accumulation patterns and their evolution over many cycles in the piston ring pack system [2,3,4]. Yet, the existing system is unable to resolve instantaneous oil flow patterns in the piston-liner interface. In this work, a high-speed LIF system was developed. After a number of iterations the finalized high speed LIF system includes a 23 W, 100 kHz, 532 nm laser and a high speed camera capable of 100,000 FPS at 384 × 264 pixel resolution. After each component was selected, optimization of the quality of images taken from the system began.
Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Implementation and Improvements of a Flow Continuity Algorithm in Modeling Ring/Liner Lubrication

2005-04-11
2005-01-1642
Based upon a hydrodynamic lubrication model used in journal bearing simulation, a one-dimensional flow continuity algorithm was developed in modeling ring-liner lubrication. By applying a “universal” differential equation to the entire ring-liner interface, the starting and ending points of full film can be located automatically. Considering the oil flow difference in the regions partially filled by oil between the ring/liner lubrication and bearing lubrication, the traditional assumption that the streams of oil and oil-vapor/air attach to both surfaces was relaxed in this model. Corresponding to this improvement, a transition region was introduced to smooth out the discontinuity of convection flow at the interface between a region fully filled by oil and a region partially filled by oil. Moreover, a distribution of standard pressure, which is crucial in formulating the universal differential equation, was proposed.
Technical Paper

Modeling Piston Ring-Pack Lubrication With Consideration of Ring Structural Response

2005-04-11
2005-01-1641
The lubrication of the piston ring-pack is directly related to the engine friction and oil consumption. Non-axisymmetric characteristics of the power cylinder system, most noticeably cylinder bore distortion, piston secondary motion, and ring gaps, can introduce circumferential variations to ring/liner lubrication and overall performance of the ring-pack in friction and oil consumption. In order to be able to optimize the piston ring-pack in a more fundamental way, it is necessary to develop physical understanding of the effects of these non-axisymmetric properties and effective numerical tools. In this study, a comprehensive model has been developed for the lubrication of a piston ring-pack. By employing a finite element analysis, this model is capable of evaluating the in-plane structural response of a ring to external forces. A newly developed one-dimensional hydrodynamic lubrication sub-model is implemented to calculate the lubrication force at each cross-section.
Technical Paper

Modeling and Optimizing Honing Texture for Reduced Friction in Internal Combustion Engines

2006-04-03
2006-01-0647
Frictional losses in the piston ring-pack of an engine account for approximately half of the total frictional losses within the power cylinder of an engine. Three-dimensional honing groove texture was modeled, and its effect on piston ring-pack friction and engine brake thermal efficiency was investigated. Adverse effects on engine oil consumption and durability were also considered. Although many non-conventional cylinder liner finishes are now being developed to reduce friction and oil consumption, the effects of surface finish on ring-pack performance is not well understood. A rough surface flow simulation program was developed to calculate flow and stress factors that adjust the solution of the Reynolds equation for the effects of surface roughness as has been done in the literature. Rough surface contact between the ring and liner was modeled using a previously published methodology for asperity contact pressure estimation between rough surfaces.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
Technical Paper

Modeling of piston pin rotation in a large bore gas engine

2023-09-29
2023-32-0161
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
X