Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

100 Million Smart Assistants on Wheels…

2006-10-16
2006-21-0014
Cars are undergoing major design changes, and typical usage scenarios are already showing significant departures from the main goal. What used to be mostly a transportation means is quickly becoming a mobile micro-world that replicates features, functions and services traditionally available in homes and offices. This paper will identify industry trends in the Driver-Machine-Interface area, and will try to anticipate how quickly and to what extent cars will morph into smart assistants to make the driving experience richer and even more enjoyable than it is today.
Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1984 Continental Mark VII/Lincoln Continental Electronically-Controlled Air Suspension (EAS) System

1984-02-01
840342
This paper describes the Electronic Air Suspension (EAS) System developed by Ford Motor Company. Design trade-offs between load-carrying capacity necessary with conventional steel spring suspension systems and riding comfort are avoided when today's microcomputer technology is combined with a leveling air spring suspension. An electric air compressor with regenerative air dryer, three electronic “Hall Effect” height sensors, four air springs with integral solenoids, and a control module with a single chip microcomputer are the key EAS System components discussed.
Technical Paper

1987 Thunderbird Turbo Coupe Programmed Ride Control (PRC) Suspension

1987-02-01
870540
This paper describes Programmed Ride Control (PRC), the automatic adjustable shock absorber system designed and patented by Ford Motor Company. The system utilizes low shock absorber damping under normal driving conditions to provide soft boulevard ride, automatically switching to firm damping when required for improved handling. The system's microprocessor control module “learns” where the straight ahead steering wheel position is, allowing the system to respond to absolute steering wheel angle. A closed loop control strategy is used to improve system reliability and to notify the driver in the event of a system malfunction. Fast acting rotary solenoids control the damping rate of the shock absorbers.
Technical Paper

1988 Lincoln Continental Variable-Assist Power Steering System

1988-02-01
880707
Conventional power steering systems can be “tailored” to provide light steering efforts for parking and low speed, or high steering efforts for stability and “road feel” at high speed. In either case, the customer's preferred steering efforts are not provided at all times. Compromises are required. The need for a speed-sensitive steering effort system has prompted the introduction of several innovative variable-assist steering systems in the past few years, which are currently used in some European and Japanese vehicles. This paper describes a Ford-patented variable-assist system used on the 1988 Lincoln Continental, the first application of vehicle speed-sensitive steering to an American-designed and manufactured vehicle. The Ford Variable-Assist Power Steering System is a “rotary steering valve” system. It uses a modification of the current rotary valve to provide low steering efforts (low torsion bar twist) at low speed and higher efforts (more twist) as vehicle speed increases.
Technical Paper

1D Thermo-Fluid Dynamic Simulation of a High Performance Lamborghini V12 S.I. Engine

2005-04-11
2005-01-0692
This paper describes the development and application of the 1D thermo-fluid dynamic research code GASDYN to the simulation of a Lamborghini 12 cylinder, V 60°, 6.2 L automotive S.I. engine. The model has been adopted to carry out an integrated simulation (thermodynamic, fluid dynamic and chemical) of the engine coupled to its intake and exhaust manifolds, in order to predict not only the wave motion in the ducts and its influence on the cylinder gas exchange process, but also the in-cylinder combustion process and the pollutant emission concentration along the exhaust system. The gas composition in the exhaust pipe system is dictated by the cylinder discharge process, after the calculation of the combustion via a thermodynamic multi-zone model, based on a “fractal geometry” approach.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

22M-0156, Loading Classification for Fatigue Design Applied to Automotive Time-Series

2022-03-29
2022-01-0254
This study focuses on variable amplitude loadings applied to automotive chassis parts experiencing carmaker’s specific proving grounds. They are measured with respect to time at the wheel centres and composed of the six forces and torques at each wheel, within the standard vehicle reference frame. In the scope of high cycle fatigue, the loadings considered are supposedly acting under the structure yield stress. Among the loadings encountered during the vehicle lifetime, two classes stand out: Driven Road: loads measured during the vehicle manoeuvre; Random Road: loads mainly coming from the road asperity. To separate both effects, a frequency decomposition method is proposed before applying any lifetime assessment methods. The usual Rainflow counting method is applied to the Driven Road signal. These loadings, depending on the vehicle dynamics, are time-correlated. Thus, the load spectra is set only thanks to the vehicle accelerations time-measurement.
Technical Paper

3-Dimensional Simulation of Vehicle Response to Tire Blow-outs

1998-02-23
980221
Sudden tire deflation, or blow-out, is sometimes cited as the cause of a crash. Safety researchers have previously attempted to study the loss of vehicle control resulting from a blow-out with some success using computer simulation. However, the simplified models used in these studies did little to expose the true transient nature of the handling problem created by a blown tire. New developments in vehicle simulation technology have made possible the detailed analysis of transient vehicle behavior during and after a blow-out. This paper presents the results of an experimental blow-out study with a comparison to computer simulations. In the experiments, a vehicle was driven under steady state conditions and a blow-out was induced at the right rear tire. Various driver steering and braking inputs were attempted, and the vehicle response was recorded. These events were then simulated using EDVSM. A comparison between experimental and simulated results is presented.
Journal Article

360° Surround View System with Parking Guidance

2014-04-01
2014-01-0157
In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.
Technical Paper

4-Sensor 2-Channel Anti-Lock System for FWD Cars

1986-02-01
860511
The possibility of 2 Channel anti-lock system, which controls each of two independent hydraulic circuits of diagonal split braking system of FWD car seperately, were studied. Theoretical investigation suggested two out of four possible control logics to be promising and they were proved to be practically satisfactory through vehicle test. This system is almost as effective as expensive 3-channel or 4-channel system, when the braking force distribution between front and rear axles is correct as required by EEC Braking regulation. Under extreme condition that rear wheels lock earlier than fronts, the compromise between stopping distance and stability is necessary.
Technical Paper

4WS Technology and the Prospects for Improvement of Vehicle Dynamics

1990-10-01
901167
FOUR-WHEEL STEERING (4WS) is beginning to find widespread use as a new approach to improving vehicle dynamics, especially in the medium and high speed ranges. Steering the rear wheels in the same phase as the front wheels enhances vehicle stability. Four-wheel steering systems have an even greater potential to improve stability and steering response through suitable control over the transient characteristics of the rear wheel steer angle. This paper traces the course of Nissan research and development work on four-wheel steering and the evolution of Nissan's HICAS (4WS) technology. It also describes research activities under way on vehicle dynamics using a newly developed Simulator Vehicle, equipped with a front and rear angle transient control system which makes it possible to vary the dynamic characteristics of the vehicle instantaneously and at will while driving.
Technical Paper

53 Development of Large V6 Four-stroke 225PS Outboard Motor

2002-10-29
2002-32-1822
Since 1998, outboard motor manufactures are making every effort to meet the regulatory requirements that restrict the exhaust emissions from marine engines. Industry's first and the largest 4-sroke outboard motor F225A was introduced in the spring, 2001, targeting at off-shore fishing market in the U.S. This report describes technical features of 225HP V6 four-stroke outboard motor, which successfully conforms to the required limits, while maintaining the operating performance and compactness comparable to the corresponding two-stroke model, which has traditionally been in the mainstream of this marine engine segment.
Journal Article

6-Axis Measuring Wheels for Trucks or Heavy Vehicles

2014-04-01
2014-01-0816
The measurement of the contact forces between road and tires is of fundamental importance while designing road vehicles. In this paper, the design and the employment of measuring wheels for trucks and heavy vehicles is presented. The measuring wheels have been optimized in order to obtain high stiffness and the approximately the same mass of the wheels normally employed. The proposed multicomponent measuring wheels are high- accuracy instruments for measuring the dynamic loads during handling and durability testing. The measuring wheels can replace the wheels of the truck under normal operation. Such family of wheels plays a major role in modern road vehicles development. The measuring wheel concept design is based on a patented three-spoke structure connected to the wheel rim. The spokes are instrumented by means of strain gauges and the measuring wheel is able to measure the three forces and the three moments acting at the interface between the tire and the road.
Technical Paper

6C Compact Skid Steer Loader With Worm Gear Wheel Drives

1978-02-01
780739
This paper discusses the features and systems of a new compact skid steer loader. Special features of the new loader are a single member lift arm and worm gear wheel drives. The general systems of the machine will be discussed along with the special PTO option.
Technical Paper

70 Prediction of the Dynamic Characteristics in Valve Train Design of a Diesel Engine

2002-10-29
2002-32-1839
In designing new valve train system, it is useful to predict the complicated dynamic characteristics correctly by CAE simulation at the initial stage. In this paper, a modeling technique of mechanical system simulation and the simulation results about the dynamic characteristics of the diesel engine valve train are shown. From the measured results, it is found that the valve spring plays an important role in the dynamic characteristics of valve train. Based on the results, we propose a new model which use beam coupled the displacement and shearing stress and gap elements to express the valve spring. The model is proved very well to express not only the same-pitch valve spring but also the different-pitch valve spring. As a result, the prediction of the dynamic characteristics of the valve train provides a lot of effective data and hint for the developing valve train design of a newly designed diesel engine.
Technical Paper

80 Systemic Approach in the Analysis of the electric system in modern 2-wheel vehicles

2002-10-29
2002-32-1849
The trend of the 2 wheel vehicle obliges to define accurate methodology for analysing each aspect of the vehicle design. The paper will present the definition process of simple, easy to reproduce, cheap tests for the Electric System, and for the components of it, describing the obtainable results. It will be presented which tests are significant, and which variable must acquired, and the method for organizing the data according to the desired study target aim. As example of the System Approach is proposed the analysis of the Electric Generator Power Unit, it will be presented and described the reason why it could be convenient to install a Lundell Generator.
Technical Paper

8×8 Platform for Studing Terrain Mobility and Traction Performance of Unmanned Articulated Ground Vehicles with Steered Wheels

2013-09-24
2013-01-2356
Two characteristics of terrain mobility are essential in designing an unmanned ground vehicle (UGV): (i) the ability of a vehicle to move through terrain of a given trafficability and (ii) the obstacle performance, i.e., the ability to avoid, interact with and overcome obstacles encountered on a preset route of a vehicle. More attention has been given to the vehicle geometry including selection of the angles of approach and departure, radii of longitudinal and lateral terrain mobility, and the steering system configuration. An essential effect is exhibited by the tire properties in their interaction with the support surface; this, in turn, affects traction properties of the wheel and, thus, vehicle terrain mobility. However, the influence of power distribution between the driving wheels together with vehicle steering system on the two above-listed characteristics of terrain mobility has not been considered in depth.
Technical Paper

9000T Series John Deere Track Tractors

2000-09-11
2000-01-2634
The 9000T track-type agricultural tractors mark John Deere's entry into the high-horsepower, track tractor market. The 360-HP 9300T and the 425-HP 9400T tractors were designed with input from customers to meet customers' needs. Through customer input, on-farm research, and common sense, these tractors have been designed to work light in the spring, heavy in the fall, handle steep hillsides, turn under load and pull like a locomotive. Incorporating many of the already-market-dominating features of the 9000 wheel tractors plus innovative track vehicle features such as the wide stance, long wheel base, controllability, power, and versatility, these machines are truly amazing.
X