Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A Hybrid Economy Bleed, Electric Drive Adaptive Power and Thermal Management System for More Electric Aircraft

2010-11-02
2010-01-1786
Minimizing energy use on more electric aircraft (MEA) requires examining in detail the important decision of whether and when to use engine bleed air, ram air, electric, hydraulic, or other sources of power. Further, due to the large variance in mission segments, it is unlikely that a single energy source is the most efficient over an entire mission. Thus, hybrid combinations of sources must be considered. An important system in an advanced MEA is the adaptive power and thermal management system (APTMS), which is designed to provide main engine start, auxiliary and emergency power, and vehicle thermal management including environmental cooling. Additionally, peak and regenerative power management capabilities can be achieved with appropriate control. The APTMS is intended to be adaptive, adjusting its operation in order to serve its function in the most efficient and least costly way to the aircraft as a whole.
Technical Paper

Aircraft Thermal Management -Heat Sink Challenge

2014-09-16
2014-01-2193
Complex, high-powered electronics used on modern aircraft generate large amounts of heat, and the complexity and energy demands only grow with each new generation of electronics. Commensurate heat sinks capable of absorbing this load are the crucial element in an aircraft's thermal management system, and so the capacities of heat sinks must evolve with this electronics growth. This paper presents an industry survey of conventional heat sinks in current use and then introduces and discusses potential advances in heat sink technologies. These technologies show significant promise to increase the capacity of thermal management systems on future aircraft and thereby unlock the full performance of next generation electronics.
Technical Paper

Electric Thermal Management Architectures

2013-09-17
2013-01-2164
The escalation of vehicle operating costs due to continuously rising fuel prices has prompted aircraft designers to focus on more energy efficient designs. Among the heavy energy consumers in aircraft operations, the thermal management system is one of the largest. This is especially true of the refrigeration system powered by engine bleed air power. With the push towards more electric vehicles, an entirely new trade space has been opened up with regards to electric thermal management and the cost of bleed air versus electrical power. Despite favorable energy savings, the electric approach has increased the burden on the propulsion engine shaft power extraction systems (gearbox and drive train), electrical generators, power conditioning units, and electrical distribution systems. This paper presents potential architectures which utilize energy recovery and integration principles to address the challenges on the power generating system.
X