Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Development of an Enhanced Brine Dewatering System

2009-07-12
2009-01-2486
Water recovery is essential for long-duration space exploration transit and outpost missions. Primary stage wastewater recovery systems partially satisfy this need, and generate concentrated wastewater brines that are unusable without further processing. The Enhanced Brine Dewatering System (EBDS) is being developed to allow nearly complete recovery of water from Lunar Outpost wastewater brines. This paper describes the operation of the EBDS and discusses the development and testing of the major functional materials, components, and subsystems, including the wastewater brine ersatz formulations that are used in subsystem testing. The assembly progress of the EBDS full system prototype is also discussed, as well as plans for testing the prototype hardware.
Technical Paper

Energy-Efficient Closed Loop Heat Pump Dryer for Solid Waste Stabilization on Long Duration Space Missions

2006-07-17
2006-01-2088
Wet cabin trash, including food residues, moist hygiene wipes and wet paper towels, poses two problems on long term space missions: first, the generation of odors and potential health hazards by microbial action (spoilage); second, the diversion of water from the available recovery loops. We have developed an energy-efficient closed air-loop heat-pump dryer to remove moisture from the wet material. Circulation of hot air can pasteurize the trash in the original bag without water recovery. In drying mode, a gravity-independent Porous Membrane Condensing Heat Exchanger (PMCHX) traps condensate to be passed to the water recovery system. The DRYER system is suitable for stabilization of wet cabin waste in an advanced life support system, and may be adapted to drying of crew laundry and water recovery from water-reprocessing brines.
Journal Article

Ersatz Formulas for Lunar Outpost Wastewater and Brine

2009-07-12
2009-01-2402
Early development of wastewater and brine processing equipment must rely upon ersatz formulations because authentic urine and hygiene water are variable in composition, difficult to acquire in quantity, and have limited storage life. Previous wastewater ersatz formulations (e.g. Verostko et al, 2004) were designed for chemical fidelity, to match the elemental ratios and VOC profile of defined blends of wastewater components. This paper presents an alternative spreadsheet approach to brine and wastewater ersatz formulation by combining “building block” recipes in user-selected ratios and accounting for compositional shifts upon evaporation.
Technical Paper

Evaluation of Space-Compatible Biomass Pretreatment Methods

1999-07-12
1999-01-2076
In bioregenerative life support systems, crop residues represent a source of biochemical energy for production of chemicals, pulp products and secondary foods. Hydrolysis of the structural carbohydrates in biomass produces edible glucose as well as various 5-carbon sugars usable by microorganisms. However, the biomass must be pretreated before hydrolysis to remove minerals useful as plant nutrients, break down lignin, and improve access of the enzymes to the carbohydrates. Some pre-treatments also hydrolyze part or all of the hemicellulose, leaving purified cellulose. For use in space, pretreatments must be safe, rapid and as complete as practicable. This paper will present a process comparison of three “space-compatible” pretreatment methods for lignocellu-losic crop residues from bioregenerative life support systems. Ozonation, alkaline hydrogen peroxide, and strong alkali treatment use only regenerable materials and mild processing conditions.
Technical Paper

Identification of Microflora on Wicks and Biofilm Associated with Wastewater

2009-07-12
2009-01-2398
Brine dewatering by evaporation on porous media, and collection of wastewater evaporation condensates rich in organic carbon, both provide favorable environments for microbial growth, such as mold overgrowth of rayon wicks in the AES brine evaporation system, and bacterial biofilms on condensate-wetted surfaces. The mold growth reported on AES wicks by Campbell et al. (2003) has been identified by microscopic and molecular techniques as chiefly Chaetomium spp, most likely C. globosum, with minor occurrence of Penicillium, and other fungal species. Bacteria from the genus Bacillus was also isolated. A stable bacterial consortium dominated by three species was recovered from initially-sterile glass surfaces wetted with sterile Biological Water Processor Effluent Ersatz (Verostko et al., 2004) and exposed to humidified air over a period of one week. The species were identified as Enterobacter aerogenes, Microbacterium foliorum and Pseudomonas putida by 16S rDNA sequencing.
Technical Paper

Modeling and Simulation of the Drying of Cabin Solid Waste in Long-Term Space Missions

2008-06-29
2008-01-2194
A prototype packed bed convective dryer has been studied for use in an energy-efficient closed air-loop heat-pump drying system for astronaut cabin waste. This paper presents a transient continuum model for the heat and mass transfer between the air and wet ersatz trash in the cylindrical drying vessel. The model is based on conservation equations for energy and moisture applied to the air and solid phases and its formulation includes the unique waste characteristic of having both dry and wet solids. It incorporates heat and mass transfer coefficients for the system measured on an ersatz trash in the dryer vessel, and experimentally determined moisture sorption equilibrium relationship for the wet material. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. The validated model will be used in the optimization of the entire closed-loop system consisting of dryer, condenser, and heat-recovery modules.
Technical Paper

Predictive Modeling of Labor Requirements for Preparation of a “Bioregenerative” Diet

2003-07-07
2003-01-2542
Food preparation labor, minimal for the individually packaged food system used on ISS, represents a significant allocation of crew time in a bulk-packaged or bioregenerative food system. Direct measurements of active preparation time for individual dishes are insufficient to construct accurate estimates of food preparation labor costs when “cooking ahead” and “planned leftovers” strategies are employed, because active food preparation labor is not proportional to the number of servings of food prepared. Food preparation time was modeled as a function of batch size, based on the principle of fixed time requirements for quantity-independent preparation tasks and fixed plus marginal time requirements for quantity-dependent tasks. Videotapes of food preparation operations were used to measure the average duration of tasks such as measuring and stirring which are roughly independent of the amount of material processed.
Technical Paper

Processes for Secondary Food Production in a Bioregenerative Life Support System

1998-07-13
981557
In order to support effective recycling of resources in a bioregenerative life support system (BLSS), the processing of inedible agricultural wastes into edible food products must be included. The process of converting agricultural waste into usable food resources is called secondary food production. Secondary food production offers a way to reclaim part of the energy and nutrients already sunk in inedible biomass, thus increasing the efficiency of the BLSS and crop harvest index. However, multi-step processes and lower yields and acceptability have made some secondary food production processes in the past problematic and costly. This paper presents preliminary process descriptions for secondary food products which are likely to be cost effective and well accepted: sugar syrup prepared from biomass hydrolysate, single cell oil produced from biomass hydrolysate, and Pleurotus mushroom fruit bodies grown on recalcitrant biomass and unused substrate.
Technical Paper

Regenerative Foods Without Crops: The Case for Chemical and Microbial Synthesis of Food Ingredients for Long-Term Space Missions

2003-07-07
2003-01-2682
Food is the most costly expendable resource for long space missions. Prepackaged food is massive and has limited shelf life. Bio-regenerative food production by higher plants entails large investments of energy, equipment and labor per unit of food energy produced, and has a lengthy recovery time in the case of crop failure. Direct chemical and hybrid chemical/microbial synthesis of food ingredients could furnish food ingredients such as glycerol, fats, functional proteins and even sugars from waste materials including CO2. Before such foods can meet NASA's objective of providing a safe, nutritious, balanced and palatable diet for space crews, two levels of development work are required: first, chemical and engineering research to address the issues of byproduct toxicity and purification, and second, food product research to develop a range of acceptable foods from microbial biomass fractions and/or glycerol.
X