Refine Your Search

Search Results

Technical Paper

A Spectrophotometric Analyzer for Aqueous Samples in Microgravity

1999-07-12
1999-01-2032
The development of a spectrophotometric analyzer for use on water samples in microgravity environments is discussed. The instrument is constructed around a commercial spectrophotometer, the Hewlett-Packard HP8453, with a separate turbidimetric analyzer, here a modified Hach 2100P ratio turbidimeter. Flow-through sample cells were constructed for each instrument to support microgravity use and sample deaeration. Spectrophotometric analyses on aqueous samples on orbit are sensitive to the presence of undissolved gases in the samples. In a micro-g environment, free gas in samples can and does remain suspended, clouding the mixture and interfering with spectral optical density measurements. This paper discusses the design of a spectrophotometric analyzer, with particular emphasis on the merits of two approaches to eliminating free gas interferences in on-orbit water analyses: hyperbaric gas redissolution and deaeration across a hydrophobic membrane.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

Advanced Development of the Regenerative Microbial Check Valve

1993-07-01
932175
The Microbial Check Valve (MCV) is a reloadable flow-through canister containing iodinated ion exchange resin, which is used aboard the Shuttle Orbiter as a disinfectant to maintain water potability. The MCV exhibits a significant contact kill and imparts a biocidal residual I2 concentration to the effluent. MCVs in current use have nominal 30 day lives. MCVs baselined for Space Station Freedom will have 90 day lives, and will require replacement 120 times over 30 years. Means to extend MCV life are desirable to minimize resupply penalties. New technology has been developed for fully autonomous in situ regeneration of an expended MCV canister. The Regenerative Microbial Check Valve (RMCV) consists of an MCV, a packed bed of crystalline I2, a flow diverter valve, an in-line iodine monitor and a microcontroller. During regeneration, flow is directed first through the packed I2 bed and then into the MCV where the resin is replenished.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Interim Results

1989-07-01
891543
The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is being studied. Two stainless steel water subsystems are being used. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are being removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually recovered from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Two-Year Results

1991-07-01
911403
The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation.
Journal Article

Chemical Analysis Results for Potable Water Returned from ISS Expeditions 14 and 15

2008-06-29
2008-01-2197
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 14 and 15. During the 12-month duration of both expeditions, the Space Shuttle docked with the ISS on four occasions to continue construction and deliver additional crew and supplies; however, no Shuttle potable water was transferred to the station during Expedition 14. Russian ground-supplied potable water and potable water from regeneration of humidity condensate were both available onboard the ISS for consumption by the Expeditions 14 and 15 crews. A total of 16 chemical archival water samples were collected with U.S. hardware during Expeditions 14 and 15 and returned on Shuttle flights STS-116 (12A.1), STS-117 (13A), STS-118 (13A.1), and STS-120 (10A) in December 2006, and June, August, and November of 2007, respectively.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

Chemical Analysis of ISS Potable Water From Expeditions 8 and 9

2005-07-11
2005-01-2885
With the Shuttle fleet grounded, limited capability exists to resupply in-flight water quality monitoring hardware onboard the International Space Station (ISS). As such, verification of the chemical quality of the potable water supplies on ISS has depended entirely upon the collection, return, and ground-analysis of archival water samples. Despite the loss of Shuttle-transferred water as a water source, the two-man crews during Expedition 8 and Expedition 9 maintained station operations for nearly a year relying solely on the two remaining sources of potable water; reclaimed humidity condensate and Russian-launched ground water. Archival potable water samples were only collected every 3 to 4 months from the systems that regenerate water from condensate (SRV-K) and distribute stored potable water (SVO-ZV).
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate Collected During the MIR-21 Mission

1997-07-01
972462
The primary source of potable water planned for the International Space Station will be generated from the reclamation of humidity condensate, urine, and hygiene waters. It is vital to crew health and performance that this reclaimed water be safe for human consumption, and that health risks associated with recycled water consumption be identified and quantified. Only recently has data been available on the chemical constituents in reclaimed waters generated in microgravity. Results for samples collected during Mir-21 reveal that both the reclaimed water and stored water are of potable quality, although the samples did not meet U.S. standards for total organic carbon (TOC), total phenols, and turbidity.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

Chemical Sampling and Analysis of ISS Potable Water: Expeditions 1-3

2002-07-15
2002-01-2537
The early International Space Station (ISS) drinking water supply primarily consists of water recovered from humidity condensate and water transferred from Shuttle. The water is dispensed both from the stored water dispensing system (SVO-ZV) and the galley, which is an integral part of the condensate recovery system. The galley provides both hot and tepid water. An assessment of the quality of each potable water source is underway and consists of periodic collection of samples into Teflon® bags for return to Earth via Shuttle. Water sampling hardware and procedures developed and used during the Shuttle-Mir program are employed on ISS without significant changes. This report provides results from detailed chemical analyses of recovered potable water and supplied (stored) water samples returned from ISS Expeditions 1 through 3. These results have been used to monitor the potability of the product and stored drinking water by comparing the results against water quality standards.
Technical Paper

Depletion of Biocidal Iodine in a Stainless Steel Water System

1994-06-01
941391
Iodine depletion in a simulated water storage tank and distribution system was examined to support a larger research program aimed at developing disinfection methods for spacecraft potable water systems. The main objective of this study was to determine the rate of iodine depletion with respect to the surface area of the stainless steel components contacting iodinated water. Two model configurations were tested. The first, representing a storage and distribution system, consisted of a stainless steel bellows tank, a coil of stainless steel tubing and valves to isolate the components. The second represented segments of a water distribution system and consisted of eight individual lengths of 21-6-9 stainless tubing similar to that used in the Shuttle Orbiter. The tubing has a relatively high and constant surface area to volume ratio (S/V) and the bellows tank a lower and variable S/V.
Technical Paper

Evaluation of Capillary Electrophoresis for In-flight Ionic Contaminant Monitoring of SSF Potable Water

1992-07-01
921268
Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

ISS Expeditions 10 & 11 Potable Water Sampling and Chemical Analysis Results

2006-07-17
2006-01-2015
During the twelve month period comprising Expeditions 10 and 11, the chemical quality of the potable water onboard the International Space Station (ISS) was verified through the return and ground analysis of water samples. The two-man Expedition 10 crew relied solely on Russian-provided ground water and reclaimed cabin humidity condensate as their sources of potable water. Collection of archival water samples with U.S. hardware has remained extremely restricted since the Columbia tragedy because of very limited return volume on Russian Soyuz vehicles. As a result only two such samples were collected during Expedition 10 and returned on Soyuz 9. The average return sample volume was only 250 milliliters, which limited the breadth of chemical analysis that could be performed. Despite the Space Shuttle vehicle returning to flight in July 2005, only two potable water samples were collected with U.S. hardware during Expedition 11 and returned on Shuttle flight STS-114 (LF1).
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 6 & 7

2004-07-19
2004-01-2537
Ever since the first crew arrived at the International Space Station (ISS), archival potable water samples have been collected and returned to the ground for detailed chemical analysis in order to verify that the water supplies onboard are suitable for crew consumption. The Columbia tragedy, unfortunately, has had a dramatic impact on continued ISS operations. A major portion of the ISS water supply had previously consisted of Shuttle-transferred water. The other two remaining sources of potable water, i.e., reclaimed humidity condensate and Russian-launched ground water, are together insufficient to maintain 3-person crews. The Expedition 7 crew launched in April of 2003 was, therefore, reduced from three to two persons. Without the Shuttle, resupply of ISS crews and supplies is dependent entirely on Russian launch vehicles (Soyuz and Progress) with severely limited up and down mass.
Technical Paper

ISS Total Organic Carbon Analyzer - 2002 Status

2002-07-15
2002-01-2533
Potable water supplies onboard the International Space Station (ISS) include both reclaimed water from treatment of atmospheric humidity condensate and stored water that is either Shuttle-transferred or ground-supplied. Space station medical operations requirements call for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected from unsafe drinking water. A Total Organic Carbon Analyzer (TOCA) designed to meet these requirements was developed as part of the Crew Health Care System and launched to the ISS in April of 2001. The initial design of the ISS TOCA was previously presented at this conference in 1998. The current design of the instrument includes an improved reagent system and upgraded software to enhance accuracy through the capability to measure organic contamination of the reagents and correct analytical results.
Technical Paper

ISS Total Organic Carbon Analyzer Status Update - 2003

2003-07-07
2003-01-2403
The Crew Health Care System (CHeCS) is responsible for providing environmental monitoring to protect crew health, including in-flight chemical water quality analysis. To meet this objective, Total Organic Carbon Analyzer (TOCA) Serial Number (SN) 1002 was launched to the International Space Station (ISS) in April of 2001 as part of the CHeCS hardware. Since that time it has been used to evaluate the quality of the potable water supplies consisting of reprocessed atmospheric condensate water, Shuttle-transferred water, and ground-supplied water. Potable water is available for crew use from the Service Module System for Regeneration of Water from Condensate (SRV-K) galley hot and warm ports and the Stored Potable Water System (SVO-ZV) port. Potable water samples are periodically collected from each of these ports for in-flight analysis with the TOCA.
Technical Paper

Identification of an Organic Impurity Leaching from a Prototype ISS Water Container

2001-07-09
2001-01-2125
Collapsible bladder tanks called Contingency Water Containers (CWCs) have been used to transfer water from the Shuttle to the Mir and the International Space Station (ISS). Because their use as potable water storage on the ISS is planned for years, efforts are underway to improve the containers, including the evaluation of new materials. Combitherm®, a multi-layer plastic film, is a material under evaluation for use as the CWC bag material. It consists of layers of linear low density polyethylene, ethylene-vinyl alcohol copolymer, nylon, and a solvent- free adhesive layer. Long term studies of the quality of water stored in Combitherm bladders indicate a gradual but steady increase in the total organic carbon value. This suggests a leaching or breakdown of an organic component of the Combitherm.
X