Refine Your Search

Search Results

Technical Paper

67 Analysis of Mixture Conditions in a Small Two Stroke Engine Using a Gas Sampling Valve

2002-10-29
2002-32-1836
The quality of mixture formation and the combustion process is of significant importance for reducing the hydrocarbon emissions of small two stroke engines. The scope of this work was to investigate the mixture conditions after the exhaust closes and after the end of combustion depending on various engine operating points. For this experimental investigation a Gas Sampling Valve (GSV) was combined with a flame ionisation detector (FID) and a CO2-analyser. Using this technique, it was possible to measure the hydrocarbon concentration after end of combustion. Furthermore the local residual gas concentration after exhaust closes was determined. To allow for a comparison of the experimental results with calculations with CFD codes, in cylinder pressure measurement and exhaust gas measurements are done additionally.
Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

An Experimental Study of Homogeneous Charge Compression Ignition (HCCI) with Various Compression Ratios, Intake Air Temperatures and Fuels with Port and Direct Fuel Injection

2003-06-23
2003-01-2293
A promising approach for reducing both NOx- and particulate matter emissions with low fuel consumption is the so called homogeneous charge compression ignition (HCCI) combustion process. Single-cylinder engine tests were carried out to assess the influence of several parameters on the HCCI combustion. The experiments were performed both with port fuel injection (PFI) and with direct injection (DI) under various compression ratios, intake air temperatures and EGR-rates. Special emphasis was put on the fuel composition by using different gasoline and diesel fuels as well as n-heptane. Besides engine out emissions (CO2, CO, NO, O2, HC, soot) and in-cylinder pressure indication for burning process analysis, the combustion itself was visualised using an optical probe.
Technical Paper

Application of Multifiber Optics in Handheld Power Tools with High Speed Two-Stroke Gasoline Engines

2006-11-13
2006-32-0060
When developing effective exhaust emission reduction measures, a better understanding of the complex working cycle in crankcase scavenged two-stroke gasoline engines. However, in a two-stroke gasoline engine detailed measurement and analysis of combustion data requires significantly more effort, when compared to a lower speed four-stroke engine. Particularly demanding are the requirements regarding the high speed (>10,000 rpm) which inevitably goes along with heavy vibrations and high temperatures of the air cooled cylinders. Another major challenge to the measuring equipment is the increased cleaning demand of the optical sensor surface due to the two-stroke gasoline mixture. In addition, the measuring equipment has to be adapted to the small size engines. Therefore, only a fiber optical approach can deliver insight into the cylinder for analyzing the combustion performance.
Technical Paper

Application of Particle Image Velocimetry for Investigation of Spray Characteristics of an Outward Opening Nozzle for Gasoline Direct Injection

2006-10-16
2006-01-3377
The hollow cone spray from a high pressure outward opening nozzle was investigated inside a pressure vessel by means of particle image velocimetry (PIV). The flow velocities of the air outside the spray were measured via PIV in combination with fluorescent seeding particles and optical filters. The high pressure piezo electric injector has an annular nozzle to provide a hollow cone spray with an angle of about 90°. During injection a very strong and stable vortex structure is induced by the fuel spray. Besides the general spray/air interaction, the investigation of double and triple fuel injections was the main focus of this study.
Technical Paper

Comparative Study to Assess the Soot Reduction Potential of Different In-Cylinder Methods and Exhaust Gas Aftertreatment Systems for Direct Injection Diesel Engines

2007-10-29
2007-01-4016
In this study different methods to reduce the soot emissions of Diesel engines were investigated and compared to obtain their soot reduction potential. Apart from investigations on the practically usable engine map area with so called homogeneous charge compression ignition (HCCI) combustion processes a new heterogeneous combustion processes was developed and investigated which offers significantly reduced soot emissions while still applicable in the entire engine map. For the HCCI experiments the emphasis was put on the achievable engine load range when using conventional injector nozzles which still allow a conventional heterogeneous engine operation.
Technical Paper

Comparison of the Emission Behaviour and Fuel Consumption of a Small Two-Stroke SI Chainsaw under Test-Bed- and Real In-Use Conditions

2012-10-23
2012-32-0070
The emission behaviour of an internal combustion engine under test-bed conditions shows differences to the emission behaviour under real in-use conditions. Because of this fact, the developers of combustion engines and the legislator are focussing on the measurement and optimization of real in-use emissions. To this day, the research, the adjustment of the carburettor and the legislation of small handheld engines is performed under test bench conditions, especially conditioned fuel pressure and temperature, as well as air temperature. Also the engines are laid out for two operation points: rated speed with full open throttle and idle speed. This test-procedure is used for all kinds of handheld off-road applications and does not consider the load profile of the different power tools. Especially applications with transient load profiles, for example chainsaws, work in more than two operating points in real use.
Journal Article

Effect of different nozzle geometries using Pure Rapeseed Oil in a modern Diesel engine on combustion and exhaust emissions

2011-08-30
2011-01-1947
Rapeseed oil can be a possible substitute for fossil fuel in Diesel engines. Due to different physical properties of rapeseed oil like higher viscosity and higher compressibility compared to diesel fuel, rapeseed oil cannot be easily used in conventional Diesel engines without modifications. Especially incomplete combustion leads to deposits in the combustion chamber and higher exhaust gas emissions. These unfavorable characteristics are caused primarily by insufficient mixture preparation. The adjustment of the injection system will improve the mixture preparation and the combustion of a Diesel engine, operated with rapeseed oil. The nozzle geometry is the main parameter of the whole injection system chain to realize a better combustion process and so higher efficiency and lower exhaust gas emissions.
Journal Article

Experimental Investigations of a DISI Engine in Transient Operation with Regard to Particle and Gaseous Engine-out Emissions

2015-09-01
2015-01-1990
The investigation of transient engine operation plays a key role of the future challenges for individual mobility in terms of real driving emissions (RDE). A fundamental investigation of the transient engine operation requires the simultaneous application of measurement technologies for an integrated study of mixture formation, combustion process and emission formation. The major prerequisite is the combustion cycle and crank angle resolved analysis of the process for at least several individual consecutive combustion cycles during transient operation. The investigations are performed with a multi cylinder DISI engine at an Engine-in-the-Loop test bench, able to operate the engine in driving cycles as well as within target profiles (e.g. speed and torque profiles). The research project describes the methodology of analyzing elementary transient operational phases, (e.g. different variants of load steps).
Journal Article

Experimental Studies on the Occurrence of Low-Speed Pre-Ignition in Turbocharged GDI Engines

2015-04-14
2015-01-0753
In the present paper the results of a set of experimental investigations on LSPI are discussed. The ignition system of a test engine was modified to enable random spark advance in one of the four cylinders. LSPI sequences were successfully triggered and exhibited similar characteristics compared to regularly occurring pre-ignition. Optical investigations applying a high speed camera system enabling a visualization of the combustion process were performed. In a second engine the influence of the physical properties of the considered lubricant on the LSPI frequency was analyzed. In addition different piston ring assemblies have been tested. Moreover an online acquisition of the unburned hydrocarbon emissions in the exhaust gas was performed. The combination of these experimental techniques in the present study provided further insights on the development of LSPI sequences.
Journal Article

High Pressure Gasoline Direct Injection in Spark Ignition Engines - Efficiency Optimization through Detailed Process Analyses

2016-10-17
2016-01-2244
At part load and wide open throttle operation with stratified charge and lean mixture conditions the Direct Injection Spark Ignition (DISI) engine offers similar efficiency levels compared to compression ignition engines The present paper reports on results of recent studies on the impact of the in-cylinder processes in DISI engines e. g. the injection, the in-cylinder flow, the mixture preparation and the ignition on the combustion, the energy conversion and the exhaust emission behavior. The analyses of the spray behavior, of the in-cylinder flow during compression as well as of the flame propagation have been carried out applying advanced optical measurement techniques. The results enable a targeted optimization of the combustion process with respect to engine efficiency and exhaust emissions. The benefits of an increase in fuel injection pressures up to 100 MPa are discussed.
Journal Article

Influence of Fuel Composition on Exhaust Emissions of a DISI Engine during Catalyst Heating Operation

2013-10-14
2013-01-2571
Particle number measurements during different real world and legislative driving cycles show that catalyst heating, cold and transient engine operation cause increased particle number emissions. In this context the quality of mixture formation as a result of injector characteristics, in-cylinder flow, operation & engine parameters and fuel composition is a major factor. The goal of this paper is to evaluate the influence of different biogenic and alkylate fuels on the gaseous and particle number emission behavior during catalyst heating operation on a single-cylinder DISI engine. The engine is operated with a late ignition timing causing a high exhaust enthalpy flow to heat up the catalyst, a slightly lean global air fuel ratio to avoid high hydrocarbon emissions and a late injection right before the ignition to reduce the coefficient of variance of the indicated mean effective pressure.
Technical Paper

Influence of High Frequency Ignition on the Combustion and Emission Behaviour of Small Two-Stroke Spark Ignition Engines

2013-10-15
2013-32-9144
The two-stroke SI engine is the predominant driving unit in applications that require a high power-to-weight ratio, such as handheld power tools. Regarding the latest regulations in emission limits the main development area is clearly a further reduction of the exhaust emissions. The emissions are directly linked to the combustion processes and the scavenging losses. The optimization of the combustion processes, which represents one of the most challenging fields of research, is still one of the most important keys to enhance the thermal efficiency and reduce exhaust emissions. Regarding future emission regulations for small two-stroke SI engines it is inevitable that the emissions of gases causing the greenhouse effect, like carbon dioxide, need to be reduced. As most small SI engines are carburetted and operate open loop, the mixture formation and the amount of residual gas differs from cycle to cycle [1].
Technical Paper

Influence of Mixture Preparation on Combustion and Emissions Inside an SI Engine by Means of Visualization, PIV and IR Thermography During Cold Operating Conditions

1999-10-25
1999-01-3644
The focus of this work was to determine the influence of spray targeting on temperature distributions, combustion progress and unburned hydrocarbon (HC) emissions at cold operating conditions, and to show the capability of model and full engine tests adapted for different measurement techniques. A comprehensive study applying endoscopic visualization, infrared thermography, combustion and emission measurements was carried out in a 4-stroke 4-cylinder 16-valve production engine with intake port injection during different engine operating conditions including injection angle and timing. In addition 2D visualization and PIV measurements were performed in a back-to-back model test section with good optical access to the intake manifold and the combustion chamber. The measurements in both set ups were in good agreement and show that model tests could lead to useful findings for a real engine.
Technical Paper

Influence of the Alcohol Type and Concentration in Alcohol-Blended Fuels on the Combustion and Emission of Small Two-Stroke SI Engines

2012-10-23
2012-32-0038
The combustion processes optimization is one of the most important factors to enhancing thermal efficiency and reducing exhaust emissions of combustion engines [1; 2]. Future emission regulations for small two-stroke SI engines require that the emissions of gases causing the greenhouse effect, such as carbon dioxide, to be reduced. One possible way to reduce exhaust gas emissions from two-stroke small off-road engines (SORE) is to use biogenic fuels. Because of their nearly closed carbon dioxide circuit, the emissions of carbon dioxide decrease compared to the use of fossil fuels. Also biogenic fuels have a significant influence on the combustion process and thus the emissions of different exhaust gas components may be reduced. Besides greenhouse gases, several other exhaust gas components need to be reduced because of their toxicity to the human health. For example, aromatic hydrocarbons cause dangerous health problems, and can be reduced by using alkylate fuel.
Journal Article

Investigation of the Flow Velocity in the Spark Plug Gap of a Two-Stroke Gasoline Engine using Laser-Doppler-Anemometry

2011-11-08
2011-32-0529
The two-stroke SI engine remains the dominant concept for handheld power tools. Its main advantages are a good power-to-weight ratio, simple mechanical design and low production costs. Because of these reasons, the two-stroke SI engine will remain the dominant engine in such applications for the foreseeable future. Increasingly stringent exhaust emission laws, in conjunction with the drive for more efficiency, have made new scavenging and combustion processes necessary. The main foci are to reduce raw emissions of unburned hydrocarbons via intelligent guidance of the fresh air-fuel mixture and to improve performance to reduce specific emissions. The flow velocity in the electrode gap of the spark plug is of great interest for the ignition of the air-fuel-mixture and the early combustion phase of all kinds of SI engines. In these investigations, the flow velocity in the spark plug gap of a two-stroke gasoline engine with stratified scavenging was measured under various conditions.
Technical Paper

Investigations of Ignition Processes Using High Frequency Ignition

2013-04-08
2013-01-1633
High frequency ignition (HFI) and conventional transistor coil ignition (TCI) were investigated with an optically accessible single-cylinder research engine to gain fundamental understanding of the chemical reactions taking place prior to the onset of combustion. Instead of generating heat in the gap of a conventional spark plug, a high frequency / high voltage electric field is employed in HFI to form chemical radicals. It is generated using a resonant circuit and sharp metallic tips placed in the combustion chamber. The setup is optimized to cause a so-called corona discharge in which highly energized channels (streamers) are created while avoiding a spark discharge. At a certain energy the number of ionized hydrocarbon molecules becomes sufficient to initiate self-sustained combustion. HFI enables engine operation with highly diluted (by air or EGR) gasoline-air mixtures or at high boost levels due to the lower voltage required.
Technical Paper

Investigations of Mixture Formation and Combustion in Gasoline Direct Injection Engines

2001-09-24
2001-01-3647
The spray propagation and disintegration is investigated in a pressure chamber. With Particle Image Velocimetry the direction and velocity of both, fuel droplets and induced gas flow are detected. By means of shadow photographs the spray cone geometry is visualized. To verify the predictions made of the measurements mentioned above and to rate the quality of the tuning of the parameters in-cylinder gas flow, injection pressure, position of Injector and position of spark plug under real engine conditions, a fast gas sampling valve is used in three different engines. The in-cylinder gas temperature and the soot concentration are measured crank angle resolved by means of the Two-Colour-Method in a 1-cylinder GDI-engine. The soot concentration and temperature show the influence of the injection pressure on emissions like soot and nitric oxide.
Technical Paper

Investigations of Spray-Induced Vortex Structures during Multiple Injections of a DISI Engine in Stratified Operation Using High-Speed-PIV

2013-04-08
2013-01-0563
Modern gasoline direct injection engines with spray-guided combustion processes require a stable and reliable fuel mixture formation as well as an optimal stratification at time of ignition. Due to the limited time for this process the temporal and spatial analysis of the in-cylinder flow field and its influence is of significant interest. The application of a piezo injector with outward opening nozzle and its capability to realize multiple injections within the compression stroke provides additional degrees of freedom for the stratified engine operation. To improve the performance of this combination a detailed knowledge of the in-cylinder flow field and its interaction with the spray propagation during and after multiple injections is essential. The flow field measurements were applied in an optical borescope single-cylinder research engine using a high-speed particle image velocimetry (HSPIV) setup.
X