Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines

1997-02-24
970627
The current extensive revisitation of the application of gasoline direct-injection to automotive, four-stroke, spark-ignition engines has been prompted by the availability of technological capabilities that did not exist in the late 1970s, and that can now be utilized in the engine development process. The availability of new engine hardware that permits an enhanced level of computer control and dynamic optimization has alleviated many of the system limitations that were encountered in the time period from 1976 to 1984, when the capabilities of direct-injection, stratified-charge, spark-ignition engines were thoroughly researched. This paper incorporates a critical review of the current worldwide research and development activities in the gasoline direct-injection field, and provides insight into new areas of technology that are being applied to the development of both production and prototype engines.
Technical Paper

An Experimental Study of the Flow Structure Inside the Catalytic Converter of a Gasoline Engine

1995-02-01
950784
The flow structure inside the catalytic converter of gasoline engines is very important for consideration of the catalyst light-off condition, converter durability and conversion efficiency. However, the available experimental data under actual engine exhaust conditions are quite limited due to its complicated configuration, critical operating conditions and difficult optical access. Therefore, an experimental study was performed, using laser Doppler velocimetry technique, to measure the velocity distributions inside two production dual-monolith catalytic converters fitted on a firing gasoline engine over several engine operating conditions. This paper reports the normal velocity characteristics measured in a plane 1 mm away from the front surface of first monolith. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline for generating titanium dioxide seeding particles during the engine combustion.
Technical Paper

An Experimental and Analytical Investigation of the Spray Structure from Automotive Port Injectors

1994-10-01
941873
Port fuel injection system in gasoline engines is receiving an increasing attention for its potential advantages in meeting the constrains of simultaneous reduction in fuel consumption and exhaust emission, and maintaining a good engine performance. The structure of port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. In this paper, an experimental and analytical study is made to characterize the breakup mechanism and atomization process of the non-air-assisted port injector sprays in gasoline engines. The liquid sprays resulted from various types of current and development-type automotive fuel injectors were visualized using planar laser-induced fluorescence imaging technique. A comparison was made on the spray structure of the single hole and multi-hole injectors.
Technical Paper

Spray Dynamics of High Pressure Fuel Injectors for DI Gasoline Engines

1996-10-01
961925
An experimental study was made to investigate the spray characteristics of high pressure fuel injectors for direct-injection gasoline engines. The global spray development process was visualized using two-dimensional laser Mie scattering technique. The spray atomization process was characterized by Phase Doppler particle analyzer. The transient spray development process was investigated under different fuel injection conditions as a function of the time after the fuel injection start. The effects of injector design, fuel injection pressure, injection duration, ambient pressure, and fuel property on the spray breakup and atomization characteristics were studied in details. Two clear counter-rotating recirculation zones are observed at the later stage or after the end of fuel injection inside the fuel sprays with a small momentum. The circumferential distribution of the spray from the large-angle injector is quite irregular and looks like a star with several wings projected out.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Technical Paper

The Effect of Fuel-Line Pressure Perturbation on the Spray Atomization Characteristics of Automotive Port Fuel Injectors

1995-10-01
952486
An experimental study was carried out to characterize the spray atomization process of automotive port fuel injectors retrofitted to a novel pressure modulation piezoelectric driver, which generates a pressure perturbation inside the fuel line. Unlike many other piezoelectric atomizers, this unit does not drive the nozzle directly. It has a small size and can be installed easily between regular port injector and fuel lines. There is no extra control difficulty with this system since the fuel injection rate and injection timing are controlled by the original fuel-metering valve. The global spray structures were characterized using the planar laser Mie scattering (PLMS) technique and the spray atomization processes were quantified using phase Doppler anemometry (PDA) technique.
Technical Paper

The Spray Characteristics of Dual-Stream Port Fuel Injectors for Applications to 4-Valve Gasoline Engines

1995-10-01
952487
An experimental study of sprayod structures from a regular dual-stream (RDS) injector and an air-shrouding dual-stream (ASDS) injector was carried out extensively to understand the spray characteristics of dual-stream (DS) port fuel injector for applications to 4-valve gasoline engines. The injectors were tested under steady and transient conditions at different injection pressures. The global spray structures were visualized using planar laser Mie scattering (PLMS) technique and spray atomization processes were quantified using phase Doppler anemometry (PDA) technique. The experimental results showed that at the beginning of fuel injection, the spray tip penetration for the RDS injector decreases with an increase in injection pressure; however, at the later stage of fuel injection, it increases when the injection pressure is increased. It is also found that the ligaments are dominant near the injector tip for the RDS injector with threads connecting the two streams.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
X