Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Mixing Timescale Model for PDF Simulations of LTC Combustion Process in Internal Combustion Engines

2019-09-09
2019-24-0113
Transported probability density function (PDF) methods are currently being pursued as a viable approach to model the effects of turbulent mixing and mixture stratification, especially for new alternative combustion modes as for example Homogeneous Charge Compression ignition (HCCI) which is one of the advanced low temperature combustion (LTC) concepts. Recently, they have been applied to simple engine configurations to demonstrate the importance of accurate accounting for turbulence/chemistry interactions. PDF methods can explicitly account for the turbulent fluctuations in species composition and temperature relative to mean value. The choice of the mixing model is an important aspect of PDF approach. Different mixing models can be found in the literature, the most popular is the IEM model (Interaction by Exchange with the Mean). This model is very similar to the LMSE model (Linear Mean Square Estimation).
Technical Paper

Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics

2019-04-02
2019-01-1165
In the present study, dual fuel mode is investigated in a single cylinder optical compression ignition (CI) research engine. Methane is injected in the intake manifold while the diesel is delivered via the standard injector directly into the engine. The aim is to study by non-intrusive diagnostics the effect of increasing methane concentration at constant injected diesel amount during the combustion evolution from start of combustion. IR imaging is applied in cycle resolved mode. Three filters are adopted to detect from injection to combustion phase with high spatial and temporal resolution: OD1.45 (3-5.5 μm), band pass 3.3 μm (hydrocarbons) and band pass 4.2 μm (CO2). Using the band pass IR imaging qualitative information about fuel-vapor distribution and ignition locations during low and high temperature combustion have been provided.
Journal Article

Assessment of a New Quasi-Dimensional Multizone Combustion Model for the Spray and Soot Formation Analysis in an Optical Single Cylinder Diesel Engine

2013-09-08
2013-24-0044
An innovative quasi-dimensional multizone combustion model for the spray formation, combustion and emission formation analysis in DI diesel engines was assessed and applied to an optical single cylinder engine. The model, which has been recently presented by the authors, integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model. The 1D spray model is capable of predicting the equivalence ratio of the fuel during the mixing process, as well as the spray penetration. The multizone approach is based on the application of the mass and energy conservation laws to several homogeneous zones identified in the combustion chamber. A specific submodel is also implemented to simulate the dilution of the burned gases. Soot formation is modeled by an expression which derives from Kitamura et al.'s results, in which an explicit dependence on the local equivalence ratio is considered.
Technical Paper

CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode

2022-08-30
2022-01-1056
Nowadays, the stricter regulations in terms of emissions have limited the use of diesel engines on urban roads. On the contrary, for marine and off-road applications the diesel engine still represents the most feasible solution for work production. In the last decades, dual fuel operation with methane supply has been widely investigated. Starting from previous studies on a research engine, where diesel-methane dual fuel combustion has been deepened both experimentally and numerically with the aid of a CFD code, the authors implemented and tested a kinetic mechanism. It is obtained from the combination of the well-established GRIMECH 3.0 and a detailed scheme for a diesel surrogate oxidation. Moreover, the Autoignition-Induced Flame Propagation model, included in the ANSYS Forte® software, is applied because it can be considered the most appropriate model to describe dual fuel combustion.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
Technical Paper

Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel

2015-09-06
2015-24-2461
In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
Journal Article

Spray Formation and Combustion Analysis in an Optical Single Cylinder Engine Operating with Fresh and Aged Biodiesel

2011-04-12
2011-01-1381
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized RME at two levels of blending on spray formation and combustion in modern automotive diesel engines. The tests were performed on an optical single-cylinder engine sharing combustion system configuration with the 2.0L Euro5 GM diesel engine for passenger car application. Two blends (B50 and B100) blending were tested for both fresh and aged RME and compared with commercial diesel fuel in two different operating points typical of NEDC (1500rpm/2bar BMEP and 2000rpm/5bar BMEP). The experimental activity was devoted to an in-depth investigation of the spray density, breakup and penetration, mixture formation, combustion and soot formation, by means of optical techniques.
Journal Article

Spray and Soot Formation Analysis by Means of a Quasi-Dimensional Multizone Model in a Single Cylinder Diesel Engine under Euro 4 Operating Conditions

2015-09-06
2015-24-2416
An investigation has been carried out on the spray penetration and soot formation processes in a research diesel engine by means of a quasi-dimensional multizone combustion model. The model integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model, and is capable of predicting the spray formation, combustion and soot formation processes in the combustion chamber. The multizone model was used to analyze three operating conditions, i.e., a zero load point (BMEP = 0 bar at 1000 rpm), a medium load point (BMEP = 5 bar at 2000 rpm) and a medium-high load point (BMEP = 10 bar at 2000 rpm). These conditions were experimentally tested in an optical single cylinder engine with the combustion system configuration of a 2.0L Euro4 GM diesel engine for passenger car applications.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
X