Refine Your Search

Topic

Author

Search Results

Standard

Active Safety Systems Terms and Definitions

2021-03-22
HISTORICAL
J3063_202103
This SAE Technical Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools, and publications related to active safety systems. This information report is a survey of active safety systems and related terms. The definitions offered are descriptions of functionality rather than technical specifications. Included are warning and momentary intervention systems, which do not automate any part of the dynamic driving task (DDT) on a sustained basis (SAE Level 0 as defined in SAE J3016), as well as definitions of select features that perform part of the DDT on a sustained basis (SAE Level 1 and 2).
Standard

Adaptive Driving Beam System

2021-03-25
CURRENT
J3069_202103
This SAE Recommended Practice provides test procedures, performance requirements, and design guidelines for adaptive driving beam (ADB) and associated equipment.
Standard

Aerospace Fluid Power - Contamination Sensitivity - Considerations for Establishing Test Procedures for Flight Control Actuators

2020-10-09
CURRENT
ARP5941
This SAE Aerospace Recommended Practice (ARP) describes the design conditions under which tests should be conducted to demonstrate satisfactory performance of a flight critical servo-actuator under the maximum allowable particulate contamination in the associated airplane hydraulic system. Additionally, this document also describes the recommended tests and the required acceptance criteria.
Standard

Aerospace Hydraulic Fluids Physical Properties

2016-11-01
HISTORICAL
AIR1362C
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertains to fluids conforming to the following specifications: MIL-PRF-5606 MIL-H-8446 MIL-PRF-27601 (canceled) MIL-PRF-27601 has been canceled without replacement and the data presented herein is for information purposes only. MIL-PRF-83282 MIL-H-53119 MIL-PRF-87257 AS1241 Type IV, Classes 1 and 2, and Type V
Standard

Aerospace Hydraulic Fluids Physical Properties

2018-08-16
CURRENT
AIR1362D
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertains to fluids conforming to the following specifications: MIL-PRF-5606 MIL-H-8446 MIL-PRF-27601 (canceled) MIL-PRF-27601 has been canceled without replacement and the data presented herein is for information purposes only. MIL-PRF-83282 MIL-H-53119 MIL-PRF-87257 AS1241 Type IV, Classes 1 and 2, and Type V
Standard

Aerospace Hydraulic Fluids Physical Properties

1999-12-01
HISTORICAL
AIR1362A
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertain to fluids conforming to specifications MIL-H-5606, MIL-H-8446, MIL-PRF-27601, MIL-PRF-83282, MIL-H-53119, MIL-PRF-87257, Aerospace Standard 1241 Type IV, Classes 1 and 2, and Type V. The relative merits of hydraulic fluid properties in relation to the fluid formulation, aerospace hydraulic system design and the related materials compatibility are discussed in AIR81, Hydraulic Fluid Properties. This document is essentially a metric document with English units available in the data charts for convenience. There is a treatment of conversions between ISO and English units in AIR1657.
Standard

Aerospace Hydraulic Fluids Physical Properties

2008-07-17
HISTORICAL
AIR1362B
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertain to fluids conforming to specifications MIL-H-5606, MIL-H-8446, MIL-PRF-27601, MIL-PRF-83282, MIL-H-53119, MIL-PRF-87257, Aerospace Standard 1241 Type IV, Classes 1 and 2, and Type V. The relative merits of hydraulic fluid properties in relation to the fluid formulation, aerospace hydraulic system design and the related materials compatibility are discussed in AIR81, Hydraulic Fluid Properties. This document is essentially a metric document with English units available in the data charts for convenience. There is a treatment of conversions between ISO and English units in AIR1657.
Standard

Aircraft Ground Deicing/Anti-Icing Training and Qualification Program

2020-06-11
HISTORICAL
AS6286B
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training.
Standard

Aircraft Ground Deicing/Anti-Icing Training and Qualification Program

2023-03-31
CURRENT
AS6286C
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training.
Standard

Alternative (Ecological) Method for Measuring Electronic Product Immunity to External Electromagnetic Fields

2008-08-25
HISTORICAL
ARP5889
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before.
Standard

Alternative (Ecological) Method for Measuring Electronic Product Immunity to External Electromagnetic Fields

2023-03-20
CURRENT
ARP5889A
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before.
Standard

Application Protocol and Requirements for Maneuver Sharing and Coordinating Service

2023-03-23
CURRENT
J3186_202303
This SAE Standard provides requirements to support applications for the maneuver sharing and coordinating service (MSCS) beyond broadcast of basic safety messages (BSMs). This is to improve road safety and traffic efficiency by sharing and coordinating vehicle maneuvers via vehicle-to-everything (V2X) communications. This document lays out use case scenarios and defines vehicle-to-vehicle (V2V) application protocols, system requirements and message sets for MSCS. The defined message sets for MSCS will result in identifying new message types, data frames, and data elements for SAE J2735.
Standard

Automated Driving System Data Logger

2021-07-23
CURRENT
J3197_202107
This SAE Recommended Practice provides common data output formats and definitions for a variety of data elements that may be useful for analyzing the performance of automated driving system (ADS) during an event that meets the trigger threshold criteria specified in this document. The document is intended to govern data element definitions, to provide a minimum data element set, and to specify a common ADS data logger record format as applicable for motor vehicle applications. Automated driving systems (ADSs) perform the complete dynamic driving task (DDT) while engaged. In the absence of a human “driver,” the ADS itself could be the only witness of a collision event. As such, a definition of the ADS data recording is necessary in order to standardize information available to the accident reconstructionist.
Standard

Automobile and Motor Coach Wiring

2016-04-13
CURRENT
J1292_201604
This SAE Recommended Practice covers the application of primary wiring distribution system harnesses to automotive, and Motor Coach vehicles. This is written principally for new vehicles but is also applicable to rewiring and service. It covers the areas of performance, operating integrity, efficiency, economy, uniformity, facility of manufacturing and service. This practice applies to wiring systems of less than 50 V.
Standard

Automotive Stability Enhancement Systems

2000-12-01
HISTORICAL
J2564_200012
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a ABS—Antilock Braking Systems b TCS—Traction Control Systems c AYC—Active Yaw Control Systems The document is technical in nature and attempts to remain neutral about specific manufacturer designs, and automobile producer features.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2012-07-26
HISTORICAL
J2931/4_201207
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the Plug-In Vehicle (PEV) and the Electric Vehicle Supply Equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or Home Area Network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2014-10-21
HISTORICAL
J2931/4_201410
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2023-05-24
CURRENT
J2931/4_202305
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
X