Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Concept of Lunar Base Regenerative Water Management System Construction

1995-07-01
951603
A concept of developing a regenerative water management system (RWMS) for first lunar base missions is reviewed. The principal feature of the concept proposed is the maximum possible unification of RWMS for long-duration orbiting station and a lunar base with due regard to possible modification of the hardware for lunar gravity conditions. The paper is based on the expertise in research, development, testing and flight operation of RWMS in Russia. An upgraded RWMS of the International Space Station may be used for first lunar missions.
Technical Paper

A Function Simulation of the Space Orbital Stations' and Interplanetary Vehicles' Ecological/Technical System

1995-07-01
951695
This paper deals with a functions analysis methodology of the Space Orbital Stations' and Interplanetary Vechicles' Ecological/Technical System (ETS) intended for research into various stages of the system life cycle based on methods of simulation. The man-made ecosystem of any spacecraft is distinguished from the natural ecosystem as follows: (a) Man is the decisive part of the system defining the main requirements to its properties, functions and developing laws; (b) the processes of controlled substance turnover are accomplished in the limited number of technical units at rates substantially exceeding those of slow natural processes. That is why the similar system shall be defined as the ecological/technical system. The ETS conceptual model is substantiated.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

Development and Operation of the MIR Space Station System for Hygiene Waste Water Recovery

1994-06-01
941535
The paper deals with the system for hygiene water recovery developed for the Mir orbital space station. The paper presents a system schematic, its operation logic and the system component design. The results of system ground checkout tests and its operation on the Mir space station verify the system design solution adopted and the effectiveness of the procedures developed for system preservation and re-activation prior to and during station spaceflight.
Technical Paper

Development of Urine Processor Distillation Hardware for Space Stations

1995-07-01
951605
This paper describes the results of research and tests of different patterns of distillation processes for water reclamation from urine accomplished by NIICHIMMASH in cooperation with other companies. Several typical patterns of evaporation to air flow from water-retentive porous bodies, from the surface confined by capillary/porous membranes and from free liquid surface in rotary units under atmospheric and reduced pressure are analyzed. Relevant condensation processes are reviewed. Performance data for distillation unit of SS MIR system for water reclamation from urine are outlined. The paper highlights the prospects of distillation hardware development.
Technical Paper

Experience in Development and Operation of Systems for Water Recovery from Humidity Condensate for Space Stations

1995-07-01
951604
The paper analyzes and summarizes experience in developing and flight operation of the system for potable water recovery from humidity condensate. The system schematic and its hardware are reviewed. The system performance data on Salut and Mir space stations are presented. Succession to the development of a similar system for the International Space Station (ISS) service module is shown.
Technical Paper

Physical/Chemical Regenerative LSS for Planetary Habitations

1996-07-01
961549
A concept of LSS building for planetary stations is suggested on the basis of experience in the development, research and testing of physical/chemical regenerative LSS for long-duration ground-based bio-technical complexes of habitat support and for orbiting space stations. A gradual transition from integrated physical/chemical regenerative LSS to hybrid integrated physical/chemical and bio-technical LSS and finally to integrated bio-technical regenerative LSS, is suggested. It is shown that at all phases of integrated LSS development, the systems based on physical/chemical processes will be critical for correlating the interfaces between the biological components that process the products obtained in the bio-components, and enabling the vitality of integrated LSS under emergency situations. The interface of integrated LSS with base power supply system is outlined.
Technical Paper

Problems of Developing Systems for Carbon Dioxide Processing and Oxygen Generation by Electrolysis for Space Station

1994-06-01
941342
As space flights tend to be more prolonged problems of oxygen generation by physico-chemical means assume greater importance. The paper deals with the water electrolysis process and CO2 reduction. Some operational results of the system for water electrolysis on Mir space station are presented. Expected characteristics of the systems for water electrolysis and carbon dioxide reduction are considered.
Technical Paper

Systems for Water Reclamation from Humidity Condensate and Urine for Space Station

1994-06-01
941536
This paper deals with water reclamation from humidity condensate and urine schematics and processes realized on orbital space stations Salut and Mir. The results of research in updated processes and schematics for condensate separation, purification and distillation with heat energy recovery are described. It is shown that the processes and hardware make possible to reduce energy demand and the weight of the water recovery systems under operation on space stations.
Technical Paper

Updated Systems for Water Recovery from Humidity Condensate and Urine for the International Space Station

1997-07-14
972559
At the initial phase of the construction of the international space station (ISS) water supply will be provided by the systems located in the Russian segment. The paper reviews the systems for water recovery from humidity condensate and urine to be incorporated in the Russian segment of the ISS. The similar systems have been successfully operated on the Mir space station. The updates aim at enhancing system cost-effectiveness and reliability. The system for water recovery from humidity condensate (WRS-C) features an added assembly for the removal of organic contaminants to be catalytically oxidized in an air/liquid flow at ambient temperature and pressure. The system for water reclamation from urine (WRS-U) incorporates a new distillation subsystem based on vacuum distillation with a multistage rotary distiller and a vapor compression or thermoelectric heat pump. The updating of the WRS-C system will enable an increase in the multifiltration bed's life at least two fold.
Technical Paper

Water Supply Based on Water Reclamation from Humidity Condensate and Urine on a Space Station

1996-07-01
961408
The paper reviews an integrated system for space station water supply based on a combination of water recovery systems and a water resupply system. The water balance data and system performance data in long-duration operation on the Mir space station are presented. A water supply concept for the Russian's segment (RS) of the International Space Station (ISS) is substantiated.
X