Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Integrated Approach to Thermal Management of International Space Station Logistics Flights: Improving the Efficiency

2003-07-07
2003-01-2516
The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module, this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented by the MPLM Mission Engineering Team were NASA firsts and all served to improve the overall operations. This paper provides the integrated engineering/operations solutions to several key issues. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation, the goal was to “tune” the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Development Status

2009-07-12
2009-01-2457
The Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the International Space Station and then later, from the Earth to the Moon . This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably while preparing for Preliminary Design Review in the summer of 2009. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage. This paper covers the Orion ECLS development from April 2008 to April 2009.
Technical Paper

Development Status of the International Space Station Urine Processor Assembly

2003-07-07
2003-01-2690
NASA, Marshall Space Flight Center (MSFC) is developing a Urine Processor Assembly (UPA) for the International Space Station (ISS). The UPA uses Vapor Compression Distillation (VCD) technology to reclaim water from pre-treated urine. This water is further processed by the Water Processor Assembly (WPA) to potable quality standards for use on the ISS. NASA has developed this technology over the last 25-30 years. Over this history, many technical issues were solved with thousands of hours of ground testing that demonstrate the ability of the UPA technology to reclaim water from urine. In recent years, NASA MSFC has been responsible for taking the UPA technology to “flight design” maturity. This paper will give a brief overview of the UPA design and a status of the major design and development efforts completed recently to mature the UPA to a flight level.
Technical Paper

International Space Station Environmental Control And Life Support System Status: 2001-2002

2002-07-15
2002-01-2494
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between May 2001 and April 2002. The ISS continued permanent crew operations, with Phase 2 completion accomplished during this period. Work continued on the Phase 3 elements with Node 3 proceeding toward a final design review and the regenerative ECLS equipment proceeding into manufacturing.
Technical Paper

Overview of the International Space Station, Mini-Pressurized Logistics Module, Environmental Control System

1997-07-01
972412
The Mini-Pressurized Logistics Module (MPLM), shown in Figure 1, is the primary vehicle for the transportation of equipment, scientific payloads, and supplies for use inside of the International Space Station, hence the importance of the MPLM environmental control system design. Agenzia Spaziale Italian (ASI), an International Space Station Partner (IP), will supply three MPLMs, currently being designed and fabricated by Alenia Aerospazio, Divisione Spazio, to the Space Station Program. Design oversight for this activity is being performed by NASA's Marshall Space Flight Center (MSFC).
Technical Paper

Programmable Thermostats for MPLM Shell Heater Control ULF1.1 Thermal Performances

2007-07-09
2007-01-3028
The Multi-Purpose Logistics Module (MPLM) is the primary carrier for “pressurized” logistics to and from the International Space Station (ISS). The MPLM is transported in the payload bay of the Space Shuttle and is docked to the ISS for unloading, and reloading, of contents within the ISS shirt sleeve environment. Foil heaters, controlled originally with bi-metallic thermostats, are distributed across the outside of the MPLM structure and are utilized to provide energy to the structure to avoid exposure to cold temperatures and prevent condensation. The existing bi-metallic, fixed temperature set point thermostats have been replaced with Programmable Thermostats Modules (PTMs) in the Passive Thermal Control Subsystem (PTCS) 28Vdc shell heater circuits. The goal of using the PTM thermostat is to improve operational efficiency of the MPLM on-orbit shell heaters by providing better shell temperature control via feedback control capability.
Technical Paper

Status of the Regenerative ECLSS Water Recovery System

2008-06-29
2008-01-2133
NASA is completing the development of a regenerative water recovery system (WRS) for the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). Test activities have been completed for the system and planning for launch and on-orbit activation is underway. This paper summarizes the status as of April 2008 and describes some of the technical challenges encountered and lessons learned over the past year.
Technical Paper

Status of the Regenerative ECLSS Water Recovery System

2007-07-09
2007-01-3100
NASA is developing a regenerative water recovery system (WRS) for deployment on the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). The WPA has been developed by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA has been developed by the Marshall Space Flight Center (MSFC). Test and verification activities have been completed for the system and planning for launch and on-orbit activation is underway. This paper summarizes the status as of April 2007 and describes some of the technical challenges encountered and lessons learned over the past year.
X