Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Evaluation of the Hubble Space Telescope Thermal Design in Preparation for the Final Servicing Mission

2006-07-17
2006-01-2279
Having been in operation for over 15 years, the Hubble Space Telescope (HST) had experienced significant changes in both hardware upgrades and operational modes. The changes were necessary to improve performance of some equipment and to replace failed electronics in others. Hardware replacements were done in several servicing missions. To accommodate the change in physical condition of HST, alterations in the way the telescope is operated were also required. The final opportunity to make any hardware changes on HST is during Servicing Mission 4 (SM-4) which is currently scheduled for December of 2007. It is important to make the most appropriate changes in order to ensure that HST will be in good operating condition until its planned termination. In order to provide manifest input to the HST project for the final servicing mission, the HST thermal team must conduct careful evaluation of every single piece of hardware on HST.
Technical Paper

BIFAC: A Program for Computing Thermal Radiant Interchange Among Non-Idealized Surfaces

1993-07-01
932259
A new, general-purpose computer program (BIFAC) has been developed for computing thermal radiant interchange among opaque surfaces that need not be perfectly diffuse or perfectly specular. The method uses the full bi-directional reflectance distribution function (BRDF) to determine directional radiosities, and thence heat fluxes, between surfaces. The method gives more accurate average interchange factors for diffuse surfaces, because it better represents interaction in corners. The maximum error in a stringent test using a specular surface was 8.9%, in great part because the exact specular solution does not include the real specular cone that is used in BIFAC.
Technical Paper

Design Evolution of the Capillary Pumped Loop (CAPL 2) Flight Experiment

1996-07-01
961431
The Capillary Pumped Loop Flight Experiment (CAPL 2) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in microgravity, prior to implementation on EOS. CAPL 1 was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Start-up difficulties on CAPL 1 led to a redesign of the experiment (CAPL 2) and a reflight on STS-69 in September of 1995. The CAPL 2 flight was extremely successful and the new “starter pump” design is now baselined for the EOS application. This paper emphasizes the design history, the CAPL 2 design, and lessons learned from the CAPL program.
Technical Paper

Hubble Space Telescope Thermal Math Model Improvement after Fifteen Years of On-Orbit Operations

2006-07-17
2006-01-2280
The Hubble Space Telescope (HST) was launched in 1990 and has undergone several Servicing Missions that have replaced and repaired various scientific and support hardware. As preparations begin for Servicing Mission Four (SM4) in 2008 and the life extension activities that follow, the Telescope Thermal Math Model (TMM) has been improved using the latest thermal analysis software and techniques. Several efforts have been made to improve the HST system-level TMM since launch. A brief history of the major model updates, as well as the motivation behind the changes has been provided. The current improvements have provided the HST systems-level TMM a greater level of detail, while making model control more user-friendly and the results easier to verify. Several modeling techniques useful for spacecraft thermal design and operations support are discussed.
Technical Paper

Investigation of Low Power Operation in a Loop Heat Pipe

2001-07-09
2001-01-2192
This paper presents test results of an experimental study of low power operation in a loop heat pipe. The main objective was to demonstrate how changes in the vapor void fraction inside the evaporator core would affect the loop behavior. The fluid inventory and the relative tilt between the evaporator and the compensation chamber were varied so as to create different vapor void fractions in the evaporator core. The effect on the loop start-up, operating temperature, and capillary limit was investigated. Test results indicate that the vapor void fraction inside the evaporator core is the single most important factor in determining the loop operation at low powers.
Technical Paper

Testing of A Loop Heat Pipe Subjected to Variable Accelerating Forces, Part 2: Temperature Stability

2000-07-10
2000-01-2489
Loop Heat Pipes (LHPs) are being considered for cooling of military combat vehicles and spinning spacecraft. In these applications, it is important to understand the effect of an accelerating force on the performance of LHPs. In order to investigate such an effect, a miniature LHP was installed on a spin table and subjected to variable accelerating forces by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting centrifugal accelerations ranged from 1.2 g's to 4.8 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that the LHP operating temperature under a stationary condition is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

The Cryogenic Thermal System Design of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

2005-07-11
2005-01-3041
The thermal design and modeling of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is described. The ISIM utilizes a series of large radiators to passively cool its three near-infrared instruments to below 37 Kelvin. A single mid-infrared instrument is further cooled to below 7 Kelvin via stored solid Hydrogen (SH2). These complex cooling requirements, combined with the JWST concept of a large deployed aperture optical telescope, also passively cooled to below 50 Kelvin, makes JWST one of the most unique and thermally challenging space missions flown to date. Currently in the preliminary design stage and scheduled for launch in 2010, NASA’s JWST is expected to replace the Hubble Space Telescope as the premier space based astronomical observatory.
X