Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1970 Passenger Car High Altitude Emission Baseline

1979-02-01
790959
The 1977 Clean Air Act Amendments allow the U.S. Environmental Protection Agency to set high altitude emission standards for 1981-83, but specify that any such standards may not be more stringent than comparable sea level standards -- relative to 1970 emission levels. Since available high altitude emission data from 1970 models were incomplete and controversial, the Motor Vehicle Manufacturers Association contracted with Automotive Testing Laboratories, Inc. to test a fleet of 25 1970 cars. Results of the test program showed average increases in emissions at Denver's altitude, compared to sea level, to be about 30% for evaporative HC, 57 to 60% for exhaust HC, 215 to 247% for CO and -46 to -47% for NOx. Corresponding HC and CO exhaust emission baselines would be 6.4 to 6.6 and 108 to 118 g/mi respectively.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Article

2050 aircraft engine designs go radical, part 2

2018-10-24
In part two of a two-part series, Richard Gardner discusses various aerospace propulsion innovations and continued work by aerospace engineers and scientists to advance aircraft engine technologies to increase efficiency and lower emissions.
Technical Paper

3-D Ultrasound for Medical Imaging in Space

1997-07-01
972286
Ultrasound is attractive for medical imaging in space because scanners can be small, lightweight, low power, and have minimal electromagnetic emissions. In addition, unlike conventional 2-D ultrasound. 3-D ultrasound allows an operator with no diagnostic skills to collect high-quality scans that can be interpreted by a remote expert. This allows 3-D ultrasound to be used effectively in remote locations. These capabilities are illustrated by the MUSTPAC-1, a portable 3-D ultrasound telemedicine system recently developed for the U.S. military. Design, implementation, and field experiences with the MUSTPAC-1 are discussed, and extensions for use in space are proposed.
Standard

3GCN - SEAT DISTRIBUTION SYSTEM

2014-08-15
CURRENT
ARINC809-3
This specification defines general architectural philosophy and specific design guidance for the proper installation and interface of various cabin equipment within the seats. Consistency with this specification allows each component installed on the seat to operate in concert when integrated with other relevant cabin type equipment. Standard electrical and mechanical interfaces of the In- Flight Entertainment System (IFES) equipment for the 3rd Generation Cabin Network (3GCN) associated with the seat are defined. This equipment consists of the headphone jacks (HPJ), passenger control unit (PCU)/multi function handset (including the cord), seat video display (SVD), remote data outlet (RDO), integrated seat box (ISB) which includes the seat power box (SPB)/seat data box (SDB), remote power outlet (RPO), and in-seat cables. Appropriate definitions are also provided for other electrical devices associated with the seat control/position mechanism.
Technical Paper

4000–5000 R Temperature Surveys in Mach 0.2–0.6 Hydrocarbon Hot Gas Streams

1963-01-01
630367
This paper discusses five different methods for measuring the gas stream temperature from a burner using a hydrocarbon fuel, air, and oxygen. Tests were made with a single shielded BeO probe, a bare wire iridium -- 60% rhodium/iridium couple, a tantalum triple shielded platinum -- 10% rhodium/platinum thermocouple, the sodium line reversed technique, and a watercooled total enthalpy probe. The most serviceable system proved to be the bare wire iridium -- 60% rhodium/iridium couple, particularly for carrying out stream surveys where relative, rather than true temperatures, are of primary concern. More study is needed to establish a system for determining the true stream temperature.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

2010-10-25
2010-01-2270
A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
Standard

649 Handbook

2020-02-13
WIP
GEIAHB649B
This handbook is intended to assist the user to understand the ANSI/EIA-649B standard principles and functions for Configuration Management (CM) and how to plan and implement effective CM. It provides CM implementation guidance for all users (CM professionals and practitioners within the commercial and industry communities, DoD, military service commands, and government activities (e.g., National Aeronautics and Space Administration (NASA), North Atlantic Treaty Organization (NATO)) with a variety of techniques and examples. Information about interfacing with other management systems and processes are included to ensure the principles and functions are applied in each phase of the life cycle for all product categories.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

A Canopy Model for Plant Growth Within a Growth Chamber: Mass and Radiation Balance for the Above Ground Portion

1991-07-01
911494
As humans move into outer space, need for air, clean water and food require that green plants be grown within all planetary colonies. The complexities of ecosystems require a sophisticated understanding of the interactions between the atmosphere, all nutrients, and life forms. While many experiments must be done to find the relationships between mass flows and chemical/energy transformations, it seems necessary to develop generalized models to understand the limitations of plant growth. Therefore, it is critical to have a robust modelling capability to provide insight into potential problems as well as to direct efficient experimentation. Last year we reported on a simple leaf model which focused upon the mass transfer of gases, radiation/heat balances, and the production of photosynthetically produced carbohydrate. That model indicated some of the plant processes which had to be understood in order to obtain parameters specific for each species.
Technical Paper

A Carbon Dioxide Sensor Based on cw- Cavity Ring Down Spectroscopy

2003-07-07
2003-01-2549
An optical sensor for the detection of carbon dioxide concentrations and stable isotope ratios is described. Either a continuous wave, fiber-coupled distributed feedback laser or an external cavity laser is used to pump an optical cavity absorption cell in cw-Cavity Ringdown Spectroscopy (cw-CRDS). This technique exploits the sensitivity enhancements provided by the long effective pathlength from the optical cavity created between two highly reflective mirrors (R>0.9999). The inherently high precision of the technique combined with its rapid data throughput allows for reliable measurements of both concentration and the isotopic composition of the sampled carbon dioxide. Data collected using a prototype of this sensor could be useful for monitoring module occupancy, crew health (through breath tests), and plant growth chambers.
Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Catalytic Combustion System Coupled with Adsorbents for Air Clean Up in Sealed Spacecraft Environment

2003-07-07
2003-01-2624
Catalytic combustion coupled with activated carbon and molecular sieve adsorbents is applicable to all areas of air and gas clean up ranging from high to low levels of pollutants and trace contaminants control in a spacecraft environment is of no exception. In this study we propose a combined activated charcoal and catalytic combustion system based on a 70 watt power input achieving 350°C, operating on a 6 hour per 24 hour day catalytic cycle with an actual flow of 10.6 l min-1 in a residual free volume of 60 m3.
Technical Paper

A Centrifugal Pump Concept Designed for Multiple Use in Space

1993-07-01
932120
A centrifugal pump concept was elaborated for a multiple application in future spacecrafts. Based on this concept a prototype of a small centrifugal pump was manufactured and comprehensively tested. The model pump has been approved in different test series with the fluids liquid ammonia and demineralized water. The design of the model pump was driven by the strict requirements of COLUMBUS, namely long life, noiseless operation, minimum mass and low energy consumption. Because of its modular design and as a result of selected materials of multiple compatibility, this pump is suited for the delivery of various further fluids, such as freons, hydrocarbons, propellants (hydrazine) etc.. It is also capable of pumping corrosive or toxic fluids for laboratory processes in space. The wide speed range from about 1,000 to 20,000 rpm which corresponds to a flow from about 1 to 20 l/min, permits an energy saving adaption and flow control.
Technical Paper

A Combustion Products Analyzer for Contingency Use During Thermodegradation Events on Spacecraft

1991-07-01
911479
As mission length and the number and complexity of payload experiments increase, so does the probability of thermodegradation contingencies (e.g. fire, chemical release and/or smoke from overheated components or burning materials), which could affect mission success. When a thermodegradation event occurs on board a spacecraft, potentially hazardous levels of toxic gases could be released into the internal atmosphere. Experiences on board the Space Shuttle have clearly demonstrated the possibility of small thermodegradation events occurring during even relatively short missions. This paper will describe the Combustion Products Analyzer (CPA), which is being developed under the direction of the Toxicology Laboratory at Johnson Space Center to provide necessary data on air quality in the Shuttle following a thermodegradation incident.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

A Complex of Systems for Oxygen Recovery Aboard a Manned Space Station

1993-07-01
932275
As space flights tend to be more prolonged problems of oxygen generation by physicochemical means assume greater importance. The paper deals with the water, electrolysis process, CO2 concentration and processing organisation schemes. Some operational results of the system for electrolysis of aqueous alkali solution and CO2 removal on Mir space station are presented. Expected characteristics of the complex system for oxygen generation from carbon dioxide are considered.
Technical Paper

A Direct Contact Membrane Separator for Diver Rebreather Carbon Dioxide Transfer to Seawater

1998-07-13
981671
Gas-permeable membranes that continuously transfer carbon dioxide (CO2) from air to water were investigated in an effort to bypass the operational limitations of expendable solid absorbents currently used for CO2 control in closed-circuit underwater breathing apparatus (UBA). Rebreather UBA CO2 control requirements and known membrane properties were used to create a functional hierarchy of membrane types and CO2 transfer mechanisms, from which one membrane configuration was selected for evaluation. This Direct Contact Membrane Separator (DCMS) employs microporous hydrophobic Hollow Fiber Membrane (HFM) modules to create large membrane areas in small volumes for air-water phase contact without intermixing. Since the micropores in the hydrophobic walls of the hollow fibers are air-filled, gas permeation rates through this membrane are far higher than for any solid or liquid membrane.
Technical Paper

A Discussion and Demonstration of Some Characteristics of an Advanced HLA/RTI Environment for Aerospace Applications

2016-10-25
2016-36-0282
Modeling and Simulation - M&S is recently gaining more importance and emphasis as an essential method for developing engineering systems especially for aerospace and automotive systems, due to their complexity, integration and even human involvement. The main reasons for M&S having that important role nowadays are: 1) M&S can predict system behavior and possible problems. Therefore, it can reduce time and cost for developing systems, it can avoid future corrections into systems, as well. 2) M&S can be used for conception, training, maintenance, etc., requiring less expensive tools and previously preparing people to the real scenario. 3) When it comes to situations that involve aerospace or other products, where high costs are involved, mistakes can be avoided or at least minimized. Summarizing, M&S can reduce project cost and schedule, and improve quality.
X