Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-23
Standard

10 Megabit/sec Network Configuration Digital Time Division Command/Response Multiplex Data Bus

2013-04-29
HISTORICAL
AS5652
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

10 Megabit/sec Network Configuration Digital Time Division Command/Response Multiplex Data Bus

2018-01-18
CURRENT
AS5652A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

13-Conductor Electrical Cable between Towing Vehicle and Trailer

2022-06-15
WIP
J3284
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 9 conductors and 2 twisted pairs for use on trucks, trailers, and dollies. The cable includes power, ground and 2 jacketed/unshielded twisted paired signal circuits. This standard will be used in conjunction with the SAEJ XXXX “13 Conductor Electrical Connector (Plug and Receptacle) between Towing Vehicle and Trailer”. The standard will also include the test procedures, design and performance requirements for the cable.
Technical Paper

1500 W Deployable Radiator with Loop Heat Pipe

2001-07-09
2001-01-2194
Two-phase capillary loops are being extensively studied as heat collection and rejection systems for space applications as they appear to satisfy several requirements like low weight, low volume, temperature control under variable heat loads and/or heat sink, operation under on ground and micro gravity conditions, simplicity of mounting and heat transfer through tortuous paths. In 1998–2000 Alenia defined and Lavochkin Association developed the Deployable Radiator on the base of honeycomb panels, axial grooved heat pipes and Loop Heat Pipe. It was designed for on-ground testing.
Technical Paper

1553 RT Mechanizations for Data Sample Consistency and Multi-Message Transfers

1993-04-01
931600
System requirements and Interface Control Drawings (ICDs) make a variety of demands for MIL-STD-1553 remote terminals (RTs). Among these requirements are the need to ensure data integrity and sample data consistency, the need to perform bulk (multi-message) data transfers, and the need to offload the operation of the host CPU to the greatest degree possible. This latter requirement is reflected in such specifications as CPU spare bandwidth. The latest 1553 terminals provide a variety of choices for performing the different types of transfers. This paper provides a discussion of the hardware and software techniques for achieving these objectives. Three different schemes for RT subaddress memory management are presented: single message, circular buffer, and double buffered. For receive and transmit messages, these include fully synchronous single message transfers, asynchronous single message transfers, and multi-message transfers.
Technical Paper

1D Modelling of Thermal Management of a Jet Trainer Aircraft

2023-03-07
2023-01-1005
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance.
Technical Paper

25-Ah Li Ion Cell for the Mars 2001 Lander

1999-08-02
1999-01-2640
BlueStar Advanced Technology Corporation (BATC) as part of its participation in the USAF/NASA Li Ion Battery Development Consortium has developed a candidate 25-Ah cell for the Mars 2001 Lander. Although the capacity and cycle life requirements for this application are relatively modest, the low temperature performance (−20°C) and pulse discharge requirements (60A) are somewhat more challenging. Geometric requirements within the spacecraft also constrain the cell design leading to a cell with an aspect ratio quite different from those 25-Ah Li ion cells previously developed by BATC. The design of this cell and its compliance with the performance requirements of the mission will be discussed.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

1991-09-01
912183
Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Technical Paper

28VDC Brushless Starter Generator Technology

2004-11-02
2004-01-3158
Innovative Power Solutions (IPS), LLC has developed a 300A and a 500A 28 VDC Brushless Wound Rotor Starter/Generator (S/G) system. These systems are capable of replacing brush type S/G or Air Turbine Starters by presenting an adequate Torque vs. Speed performance. The S/G system developed by IPS consists of the Starter/Generator (Motor/Generator) and S/G Control Unit (SGCU).
Technical Paper

3.2 KWH Battery Pack Using 18 Army Standard Lithium ion Rechargeable Batteries

2006-11-07
2006-01-3099
A very high power source solution was developed for the Non Line of Sight Launch System Container Launch Unit (NLOS-LS CLU). The power source solution has been shown to be capable of providing the required 72 continuous hours of operation and high power (3560 watts) to sustain launch capability. The power source consists of 18 BB-2590/U batteries connected in parallel in three layers. Several CLU battery systems have been delivered to the PEO and have been well accepted. The Army is using standard rechargeable batteries, is currently being upgraded with SMBus capability and higher capacity lithium-ion cells. For this reason, the CLU power source has been manufactured with SMBus capability. This paper will discuss the performance of one layer of the CLU power source to simulate the whole power load.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Standard

3GCN - CABIN DISTRIBUTION SYSTEM

2010-11-26
CURRENT
ARINC808-2
This Specification defines general architectural philosophy and aircraft infrastructure for the proper use and interface of various cabin related IFE equipment. Compliance with ARINC Specification 808 allows each respective system to operate in concert when integrated with other relevant cabin equipment. ARINC Specification 808 defines standards for the aircraft 3rd Generation Cabin Network (3GCN), IFE Cabin Distribution System (CDS), wiring, connectors, power, identification codes, space envelopes, and mounting principles. Although some of these standards also apply to 3GCN wireless IFE systems, the overall 3GCN wireless IFE network specification is covered in ARINC Specification 820. The equipment itself is not a subject of this specification because it may be unique to the system manufacturer or marketplace-driven. Design guidelines are included for informational purposes as these guidelines impact the interfaces and installation of cabin equipment aboard the aircraft.
Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400-CYCLE GROUND POWER UNIT PROVISIONS FOR AIRCRAFT ELECTRICAL SYSTEM PROTECTION

2002-12-16
CURRENT
ARP760
This SAE Recommended Practice which defines the terms and tabulates the limits of the characteristics for various protective devices used in conjunction with 400-cycle ground power for civil aircraft is intended to assist the airlines in standardizing on 400-cycle protective systems. The limits found to be acceptable in the civil aircraft industry are presented.
Journal Article

400Hz High Speed Static Transfer Switch

2008-11-11
2008-01-2877
The objective of this project was to replace electromechanical power line contactors with a Static Transfer Switch (STS) to improve the transfer of electrical power between aircraft generators and decrease required maintenance. The switch requirements include high reliability, lightweight, and high speed (less than 15mS) power transfer. An STS can shorten the bus transfer time to less than the “ride-through” of aircraft electronic loads and therefore have the ability to control and transfer electrical power while maintaining critical mission requirements. The content of this paper and presentation will discuss the initial problem, the research and development approach, design, and initial testing of the STS.
X