Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Journal Article

Design and Development of a Composite A-Pillar to Reduce Obstruction Angle in Passenger Cars

2017-03-28
2017-01-0501
In modern passenger vehicles, A-pillar plays an important role in its passive safety by minimizing the deformation of passenger compartment during the crash. To meet various crash requirements, as well as sometimes due to demand of vehicle styling, A-pillar cross section of modern vehicles is generally wider. This wider cross section acts as an increased obstruction to the field of vision of the driver. It is considered detrimental for the safety of road users. The current work proposes an innovative design solution to reduce the obstruction angle due to an A-pillar. It also addresses the weight reduction objective. This is done by utilizing the noble properties of Carbon Fiber Reinforced Polymers (CFRP). Carbon Fiber Reinforced Polymers (CFRP) offer flexibility for complex design. Due to high specific strength and stiffness, CFRP's are suitable candidate for design considerations presented in this study.
Technical Paper

Impact and Sensitivity of Vehicle Design Parameters on Fuel Economy Estimates

2010-04-12
2010-01-0734
The U.S. Environmental Protection Agency (EPA) has several methods in use to determine the overall fuel economy of a vehicle which is one of the mandatory fields on the Monroney sticker (better known as window sticker) of new cars and trucks. The fuel economy of a typical vehicle depends on many design properties physically known as the inertial-, wind- and rolling resistance. Each of these resistive forces is determined by several key design parameter (such as mass, frontal area, drag coefficient and rolling resistance coefficient) which are predetermined quite early in the design process. These design parameters, to a large extent, cannot freely be determined, are considerably co-dependent and have a large amount of interaction with other vehicle properties including overall vehicle costs. To optimize the design, careful consideration of the cost/benefit analysis for each of the design parameters must be made.
Journal Article

Impacts of Real-World Driving and Driver Aggressiveness on Fuel Consumption of 48V Mild Hybrid Vehicle

2016-04-05
2016-01-1166
The 48V mild hybrid technology is emerging as a very attractive option for high-volume vehicle electrification. Compared to high-voltage hybrids, the 48V system has a potential of achieving competitive fuel economy with significantly lower incremental costs. While previous studies of 48V mild hybrid systems discussed vehicle configuration, power management strategy and electric machine design, quantitative assessment of fuel economy under real-world conditions remains an open topic. Objectives of this paper are to propose a methodology for categorizing real-world cycles based on driver aggressiveness, and to subsequently analyze the impact of driving patterns on fuel saving potentials with a 48V mild hybrid system. Instead of using the certification test cycles to evaluate the fuel economy, real-world cycles are extracted from 2001-2003 Southern California Household Travel Survey.
Journal Article

Optimal Supervisory Control of the Series HEV with Consideration of Temperature Effects on Battery Fading and Cooling Loss

2016-04-05
2016-01-1239
This paper develops a methodology to optimize the supervisory controller for a heavy-duty series hybrid electric vehicle, with consideration of battery aging and cooling loss. Electrochemistrybased battery aging model is integrated into vehicle model. The side reaction, reductive electrolyte decomposition, is modeled to determine battery aging rate, and the thermal effect on this reaction rate is considered by Arrhenius Law. The resulting capacity and power fading is included in the system-level study. Sensitivity analysis shows that battery aging could cause fuel economy loss by 5.9%, and increasing temperature could improve fuel economy at any given state-of-health, while accelerating battery aging. Stochastic dynamic programming algorithm is applied to a modeled system to handle the tradeoff between two objectives: maximizing fuel economy and minimizing battery aging.
Journal Article

Optimization of the Series-HEV Control with Consideration of the Impact of Battery Cooling Auxiliary Losses

2014-04-01
2014-01-1904
This paper investigates the impact of battery cooling ancillary losses on fuel economy, and optimal control strategy for a series hybrid electric truck with consideration of cooling losses. Battery thermal model and its refrigeration-based cooling system are integrated into vehicle model, and the parasitic power consumption from cooling auxiliaries is considered in power management problem. Two supervisory control strategies are compared. First, a rule-based control strategy is coupled with a thermal management strategy; it controls power system and cooling system separately. The second is optimal control strategy developed using Dynamic Programming; it optimizes power flow with consideration of both propulsion and cooling requirement. The result shows that battery cooling consumption could cause fuel economy loss as high as 5%.
Journal Article

Powerpack Design in S-HEV: Quantifying the Influence of Duty Cycles on Design and Fuel Economy

2017-03-28
2017-01-0272
Military vehicles experience a wide range of duty cycles depending on the place and purpose of their deployment. Vehicle fuel consumption directly depends on those use cases, which are ranging from patrolling during peace keeping operations to direct engagements in hostiles areas. Vehicle design should accommodate this wide range of operation modes to maximize the vehicle practicality during their service life. This paper aims to quantify the sensitivity of the powerpack design for a notional 15-ton series hybrid electric vehicle for two highly dynamic military drive cycles. The optimal design for a powerpack (engine coupled with a generator) will be separately determined for each of the use cases through a previously developed optimization routine that use the Genetic Algorithm. For each iteration of the Genetic Algorithm a design benchmarking was incorporated by using Dynamic Programming.
Journal Article

Powerpack Optimal Design Methodology with Embedded Configuration Benchmarking

2016-04-05
2016-01-0313
Design of military vehicle needs to meet often conflicting requirements such as high mobility, excellent fuel efficiency and survivability, with acceptable cost. In order to reduce the development cost, time and associated risk, as many of the design questions as possible need to be addressed with advanced simulation tools. This paper describes a methodology to design a fuel efficient powerpack unit for a series hybrid electric military vehicle, with emphasis on the e-machine design. The proposed methodology builds on previously published Finite element based analysis to capture basic design features of the generator with three variables, and couples it with a model reduction technique to rapidly re-design the generator with desired fidelity. The generator is mated to an off the shelf engine to form a powerpack, which is subsequently evaluated over a representative military drive cycles.
Journal Article

Quantification of Drive Cycle's Rapid Speed Fluctuations Using Fourier Analysis

2015-04-14
2015-01-1213
This paper presents a new way to evaluate vehicle speed profile aggressiveness, quantify it from the perspective of the rapid speed fluctuations, and assess its impact on vehicle fuel economy. The speed fluctuation can be divided into two portions: the large-scale low frequency speed trace which follows the ongoing traffic and road characteristics, and the small-scale rapid speed fluctuations normally related to the driver's experience, style and ability to anticipate future events. The latter represent to some extent the driver aggressiveness and it is well known to affect the vehicle energy consumption and component duty cycles. Therefore, the rapid speed fluctuations are the focus of this paper. Driving data collected with the GPS devices are widely adopted for study of real-world fuel economy, or the impact on electrified vehicle range and component duty cycles.
X