Refine Your Search

Topic

Search Results

Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

1999-03-01
1999-01-0271
The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
Technical Paper

A Non Traditional Solution for High Vibration Connection Systems

2014-04-01
2014-01-0221
As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts.
Technical Paper

A Prognostic and Data Fusion Based Approach to Validating Automotive Electronics

2014-04-01
2014-01-0724
There is a continual growth of test and validation in high reliability product applications such as automotive, military and avionics. Principally this is driven by the increased use and complexity of electronic systems deployed in vehicles, in addition to end user reliability expectations. Higher reliability expectations consequently driving increased test durations. Furthermore product development cycles continue to reduce, resulting in less available time to perform accelerated life tests. The challenge for automotive electronic suppliers is performing life tests in a shorter period of time whilst reducing the overall associated costs of validation testing. In this paper, the application of prognostic and health monitoring techniques are examined and a novel approach to the validation and testing of automotive electronics proposed which it is suggested may be more cost effective and efficient than traditional testing.
Technical Paper

Acoustic Holography for High Pressure Fuel Injector Noise Measurements

2014-04-01
2014-01-1679
The audible noise characteristics of direct injectors are important to OEM customers when selecting a high pressure gasoline fuel injector. The activation noise is an undesirable aspect that needs to be minimized through injector design, injector mounting, and acoustic treatments. Experimentally identifying the location and frequency of noise sources is beneficial to the improvement of injector designs. Acoustic holography is a useful tool in locating these noise sources by measuring a sound pressure field with multiple microphones and using this field to estimate the source location. For injector testing, the local boundary conditions of the noise source will affect the resultant sound field. Therefore, how the injector is mounted within the test fixture will change the resultant noise field measured. In this study, the process of qualifying an acoustic holography fixture using measurement system analysis for GDi fuel injector testing will be documented.
Technical Paper

Advancements in Converter Durability to Enable Close Mounted Converters for Stringent Emissions Regulations

1999-10-25
1999-01-3621
Close coupled catalysts and new ceramic catalyst substrates have significantly improved the light-off performance of automotive converters required to meet stringent emission requirements. The hotter environment of these catalytic converters and the lower structural strength of the ceramic substrates require the rethinking of converter designs. The development of new package requirements to accommodate the change in environment and new substrates are discussed. A historical perspective on converter durability is presented as reference. Development of durability test protocols is essential to verifying product durability performance to these new environments. Data collection and documentation of testing templates are shown to demonstrate the effectiveness of tests that represent real world environments. Design improvements to address failure modes are discussed along with durability improvement results.
Journal Article

Application of Auto-Coding for Rapid and Efficient Motor Control Development

2014-04-01
2014-01-0305
In hybrid and electric vehicles, the control of the electric motor is a critical component of vehicle functions such as motoring, generating, engine-starting and braking. The efficient and accurate control of motor torque is performed by the motor controller. It is a complex system incorporating sensor sampling, data processing, controls, diagnostics, and 3-phase Pulse Width Modulation (PWM) generation which are executed in sub-100 uSec periods. Due to the fast execution rates, care must be taken in the software coding phase to ensure the algorithms will not exceed the target processor's throughput capability. Production motor control development often still follows the path of customer requirements, component requirements, simulation, hand-code, and verification test due to the concern for processor throughput. In the case of vehicle system controls, typically executed no faster than 5-10 mSec periods, auto-coding tools are used for algorithm development as well as testing.
Technical Paper

Beyond Euro VI - Development of A Next Generation Fuel Injector for Commercial Vehicles

2014-04-01
2014-01-1435
Delphi Diesel Systems (DDS) - Heavy Duty Business is developing a new range of Ultra High Pressure Common Rail Fuel Injectors with the functionality to allow the combustion heat release to be heavily adapted during operation. This allows the injector performance to be simultaneously optimised across a broad range of engine conditions, removing the constraints of having to select a single rate shape type for all operating conditions. This new technology range builds on the performance of Delphi's 2700 bar Fuel Systems of F2E, F2P and F2R, whilst adding in new levels of injector control, beyond what is available in the current market. In addition to this new functionality, Delphi's new Heavy Duty Injector range also demonstrates greatly reduced leakage and improved accuracy of fuel control. This paper reviews the benefits and possibilities of this new injector technology.
Technical Paper

Concept of Virtual Engine Control Module for High Quality and Time Efficient Verification and Testing of Powertrain Engine Control Module

2015-04-14
2015-01-0170
Wide varieties of vehicle Engine Management Systems are designed by different Tier#1 suppliers to meet highly complex requirements with the help of electronics. Emerging technologies and features of Engine Management Systems require a number of strategies for reducing the overall timing for verification with high quality testing. Analysis and decoding of data especially for highly critical and complex such as gasoline direct injection (GDi) engine fuel delivery output, high pressure fuel pump (HPFP), spark control output and different varieties of engine position signals are time consuming. This paper introduces Virtual Engine Control Module (VECM) technology to solve the problem of decoding complex signals and high level verification. A proposed test bench setup consists of VECM, ECM, simulator and real actuator load with complete software flashed inside the ECM.
Journal Article

Control of a Combined SCR on Filter and Under-Floor SCR System for Low Emission Passenger Cars

2014-04-01
2014-01-1522
Similar to single-brick SCR architectures, the multi-brick SCR systems described in this paper require urea injection control software that meets the NOx conversion performance target while maintaining the tailpipe NH3 slip below a given threshold, under all driving conditions. The SCR architectures containing a close-coupled SCRoF and underfloor SCR are temperature-wise more favorable than the under-floor location and lead to significant improvement of the global NOx conversion, compared to a single-brick system. But in order to maximize the benefit of close-coupling, the urea injection control must maximize the NH3 stored in the SCRoF. The under-floor SCR catalyst can be used as an NH3 slip buffer, lowering the risk of NH3 slip at the tailpipe with some benefit on the global NOx conversion of the system. With this approach, the urea injection strategy has a limited control on the NH3 coverage of the under-floor SCR catalyst.
Technical Paper

Designed Experiment to Evaluate the Canning Strength of Various High Cell Density / Ultra Thin Wall Ceramic Monoliths

2001-09-24
2001-01-3663
High cell density (HCD) (≥ 600 cpsi) and /or ultra thin wall (UTW) (≤ 4 mil) extruded ceramic monolith substrates are being used in many new automotive catalyst applications because they offer (1) increased geometric surface area, (2) lower thermal mass, (3) increased open frontal area and (4) higher heat and mass transfer rates. Delphi has shown in previous papers how to use the effectiveness, NTU theory, to optimize the various benefits of these HCD / UTW catalysts. A primary disadvantage of these low solid fraction substrates is their reduced structural strength, as measured by a 3-D hydrostatic (isostatic) test. The weakest of these new substrates is only 10 to 20% as strong as standard 400 × 6.5 substrates. Improved converter assembly methods with lower, more uniform forces will likely be required to successfully assemble converters with such weak substrates in production.
Technical Paper

Development of a Low-Noise High Pressure Fuel Pump for GDi Engine Applications

2013-04-08
2013-01-0253
Fuel systems associated with Gasoline Direct Injection (GDi) engines operate at pressures significantly higher than Port Fuel Injection (PFI) engine fuel systems. Because of these higher pressures, GDi fuel systems require a high pressure fuel pump in addition to the conventional fuel tank lift pump. Such pumps deliver fuel at high pressure to the injectors multiple times per engine cycle. With this extra hardware and repetitive pressurization events, vehicles equipped with GDi fuel systems typically emit higher levels of audible noise than those equipped with PFI fuel systems. A common technique employed to cope with pump noise is to cover or encase the pump in an acoustic insulator, however this method does not address the root causes of the noise. To contend with the consumer complaint of GDi system noise, Delphi and Magneti Marelli have jointly developed a high pressure fuel pump with reduced audible output by concentrating on sources of noise generation within the pump itself.
Technical Paper

Durability of Ultra Thin Wall Catalyst Solutions at Similar Restriction and Precious Metal Loading

2000-10-16
2000-01-2881
FTP emissions from a 2.2L four cylinder vehicle are measured from six different converters. These converters have been designed to have both similar flow restriction and to have similar platinum group metals. The durability of these six converters is evaluated after dynamometer aging of both 125 and 250 hours of RATsm aging. These catalytic converters use various combinations of 400/3.5 (400 cells/in2/3.5mil wall), 400/4.5, 400/6.5, 600/3.5, 600/4.5, and 900/2.5 ceramic substrates in order to meet a restriction target and to maximize converter geometric surface area. Total catalyst volume of the converters varies from 1.9 to 0.82 liters. Catalyst frontal area varies from 68 cm2 to 88 cm2. Five of the six converters use two catalyst bricks. The front catalyst brick uses either a three-way Pd washcoat technology containing ceria or a non-ceria Pd washcoat technology. To minimize dependence on palladium the rear brick uses a Pt/Rh washcoat at a loading of 0.06 Toz and a ratio of 5/0/1.
Technical Paper

F2E - Ultra High Pressure Distributed Pump Common Rail System

2014-04-01
2014-01-1440
Delphi Diesel Systems' 2700bar Proven F2E Distributed Pump Common Rail System (DPCRS) has been developed to meet the requirements of Euro VI and future emissions legislation and is now in volume production in Heavy Duty Vehicles. Incorporating a number of ground breaking new technologies, the system offers numerous performance advantages. F2E provides full common rail functionality for camshaft driven Fuel Injection Equipment (FIE) engines with minimum modification. By delivering precise and accurate control of multiple injections at maximum rail pressure across all engine operating conditions, the system minimizes the demands on exhaust after treatment systems. Additionally F2E provides real time flexible capacity by employing a unique method of pump fuel metering, enabling the most efficient and accurate transient control of rail pressure combined with the low NVH and optimised efficiency.
Technical Paper

Force Distribution on Catalysts During Converter Assembly

2000-03-06
2000-01-0222
Thinwall substrates used in modern catalytic converters are more sensitive to assembly and operating forces. Various converter assembly processes are characterized using real time force transducer technology. The force distribution data from these assembly methods are presented. The analysis of this data leads to recommendations for packaging of converters depending on catalyst strength.
Journal Article

Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions

2015-04-14
2015-01-0746
The focus of this study is investigation of the influence of fuel system pressure, intake tumble charge motion and injector seat specification - namely the static flow and the plume pattern - on the GDi engine particulate emissions under the homogenous combustion operation. The paper presents the spray characteristics and the single cylinder engine combustion data for the Delphi Multec® 14 GDi multi-hole fuel injector, capable of 40 [MPa] fuel system pressure. It provides results of a study of the influence of fuel pressure increase between 5 [MPa] to 40 [MPa], for three alternative seat designs, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel consumption. In conjunction with the fuel system pressure, the effect of enhanced charge motion on the combustion characteristics is investigated.
Technical Paper

Individual Cylinder Fuel Control for a Turbocharged Engine

2014-04-01
2014-01-1167
This paper discusses on-engine results achieved in applying an algorithm-based Individual Cylinder Fuel Control (ICFC) to turbocharged four-cylinder engines. ICFC is a software algorithm which permits the detection and closed-loop correction of air/fuel imbalances on a cylinder-by-cylinder basis, which is not possible with typical bank-wide closed loop fuel control systems. Cylinder-to-cylinder air/fuel imbalances can be the result of a number of combined sources. The potential sources include fuel injector variation (both new and aged) as well as maldistribution of fresh air airflow, evaporative emissions purge flow, or exhaust gas recirculation flow. The ICFC algorithm requires no additional hardware beyond the typical sensor set already present on modern automotive spark-ignition engines, including oxygen sensor(s) and engine controller.
Technical Paper

Innovative Sprays and Particulate Reduction with GDi Injectors

2014-04-01
2014-01-1441
Innovative nozzle hole shapes for inwardly opening multi-hole gasoline direct injectors offer opportunities for improved mixture formation and particulate emissions reduction. Compared to increased fuel pressure, an alternative associated with higher system costs and increased pumping work, nozzle hole shaping simply requires changes to the injector nozzle shape and may have the potential to meet Euro 6 particulate regulations at today's 200 bar operating pressure. Using advanced laser drilling technology, injectors with non-round nozzle holes were built and tested on a single-cylinder engine with a centrally-mounted injector location. Particulate emissions were measured and coking deposits were imaged over time at several operating fuel pressures. This paper presents spray analysis and engine test results showing the potential benefits of alternative non-round nozzle holes in reducing particulate emissions and enhancing robustness to coking with various operating fuel pressures.
Technical Paper

Integrated Front and Rear HVAC Unit

2014-04-01
2014-01-0690
Vehicles with a large cabin volume incorporate two HVAC units to provide comfort to the front and rear cabin. Each HVAC unit can generate independent airflow volume, temperature, and airflow direction. A new HVAC unit was developed to achieve the performance and functionality of two HVAC units. A unique HVAC construction was used to achieve independent front and rear airflow volume, temperature, and airflow direction distribution. This integrated front and rear HVAC unit provides additional packaging space for other vehicle components and reduces the overall number of HVAC system components.
Journal Article

Localized Cooling for Human Comfort

2014-04-01
2014-01-0686
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
Technical Paper

Methodology to Compare Effectiveness of Lubricating Additives in a Polymeric Matrix

2014-04-01
2014-01-1034
A majority of the plastics manufacturing operations are dependent on the formability of the molten thermoplastics. Ability of the material to flow at a set temperature influences the formability and the overall polymer melt process. Lubricating additive technologies are being developed to engineer the melt flow performance of the resin, promoting the compounding and molding process such as to reduce torque on the motor, reduced shear degradations, enhance uniform filling of hard-to-fill section, promoting thin wall molding, and influence the overall cycle time. Various lubricants are used in formulations to supplement superior flow and metal release with minimal effect on mechanical properties. This paper discusses the methodology to characterize the effectiveness of melt flow additives through comparing two different processing aids in Polybutylene terephthalate (PBT) polyester filled and unfilled matrix and imply differences in processing.
X