Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

1996-10-01
961903
A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Technical Paper

A Feedback A/F Control System for Low Emission Vehicles

1993-03-01
930388
Recent Federal and California legislation have mandated major improvements in emission control. Tailpipe HC emission must be decreased an order of magnitude for the California Ultra Low Emission Vehicle (ULEV) standard. Present feedback A/F* control systems employ a Heated Exhaust Gas Oxygen sensor (HEGO sensor) upstream of the catalyst to perform A/F feedback control. Limitations on the ultimate accuracy of these switching sensors are well known. To overcome these limitations a linear Universal Exhaust Gas Oxygen sensor (UEGO sensor) placed downstream from the minicatalyst is employed to attain improved A/F control and therefore, higher three-way catalyst (TWC) conversion efficiency. This configuration was granted a patent in 1992 (1**). This study compares performance differences between the two feedback control systems on a Ford Mustang. In initial studies both the UEGO and HEGO sensors were compared at the midposition location downstream of a minicatalyst.
Technical Paper

A Linear Catalyst Temperature Sensor for Exhaust Gas Ignition (EGI) and On Board Diagnostics of Misfire and Catalyst Efficiency

1993-03-01
930938
Afterburning of a rich exhaust/air mixture ahead of the catalyst has been shown in earlier papers to offer an effective means of achieving catalyst light-off in very short times. Protection of the catalyst from overheating is an important aspect of systems using EGI, and on board diagnostics will be required to check for proper function of EGI. In this paper, some options for these requirements are discussed, using a high temperature linear thermistor.
Technical Paper

A New Test for Catalyst Oxygen Storage Which Correlates with Catalyst Performance on the Vehicle

1994-10-01
942071
A new laboratory test for measuring catalyst oxygen storage capacity has been developed. The test accurately predicts catalyst performance on the vehicle during transient A/F excursions and correlates well with vehicle CO and Nox tailpipe emissions. The test was subsequently used to facilitate improved oxygen storage capacity for new Pd-only washcoat formulations.
Technical Paper

A Preliminary Research on Turbulent Flame Propagation Combustion Modeling Using a Direct Chemical Kinetics Model

2013-09-08
2013-24-0023
The present work focused on modeling turbulent flame propagation combustion process using a direct chemical kinetics model. Firstly, the theory of turbulent flame propagation combustion modeling directly using chemical kinetics is given in detail. Secondly, two important techniques in this approach are described. One technique is the selection of chemical kinetics mechanism, and the other one is the selection of AMR (adaptive mesh refinement) level. A reduced chemical kinetics mechanism with minor modification by the authors of this paper which is suitable for simulating gasoline engine under warm up operating conditions was selected in this work. This mechanism was validated over some operating conditions close to some engine cases. The effect of AMR level on combustion simulation is given, and an optimum AMR level of both velocity and temperature is recommended.
Technical Paper

A Review of the Dual EGO Sensor Method for OBD-II Catalyst Efficiency Monitoring

1994-10-01
942057
This paper provides an overview of the dual EGO sensor method for OBD-II catalyst efficiency monitoring. The processes governing the relationship between catalyst oxygen storage, HC conversion efficiency, and rear EGO sensor response are reviewed in detail. A simple physical model relating catalyst oxygen storage capacity and rear EGO sensor response is constructed and used in conjunction with experimental data to provide additional insight into the operation of the catalyst monitor. The effect that the catalyst washcoat formulation has in determining the relationship between catalyst oxygen storage capacity and HC conversion efficiency and its impact on the catalyst monitor is also investigated. Lastly, the effects of catalyst failure mode, fuel sulfur, and the fuel additive MMT on the catalyst monitor's ability to properly diagnose catalyst function are discussed.
Technical Paper

A Simplified Approach to Modeling Exhaust System Emissions: SIMTWC

1999-10-25
1999-01-3476
The optimized design of an exhaust emission system in terms of performance, cost, packaging, and engine control strategy will be a key part of competitively meeting future more stringent emission standards. Extensive use of vehicle experiments to evaluate design system tradeoffs is far too time consuming and expensive. Imperative to successfully meeting the challenges of future emission regulations and cost constraints is the development of an exhaust system simulation model which offers the ability to sort through major design alternatives quickly while assisting in the interpretation of experimental data. Previously, detailed catalyst models have been developed which require the specification of intricate kinetic mechanisms to determine overall catalyst performance. While yielding extremely valuable results, these models use complex numerical algorithms to solve multiple partial differential equations which are time consuming and occasionally numerically unstable.
Technical Paper

A Study of Ignition System Effects on Power, Emissions, Lean Misfire Limit, and EGR Tolerance of a Single-Cylinder Engine-Multiple Spark versus Conventional Single Spark Ignition

1974-02-01
740188
The characteristics of multiple spark ignition systems with respect to engine performance, emissions, lean misfire, and tolerance to exhaust gas recirculation (EGR) have been investigated using a carbureted single-cylinder engine. The results, which were compared to those obtained with a standard single spark ignition system, show that both lean misfire limit and EGR tolerance are extended with the multiple spark system. The amount of extension varies with engine load, being largest at the lighter loads studied. Engine power and emissions at non-misfiring conditions are the same with both ignition systems.
Technical Paper

Accelerated Testing of Nonvolatile Memory Retention

1984-02-01
840488
This paper discusses the testing for retentivity of non-volatile memories. The physics associated with the reliable production of various non-volatile data storage devices has long been a topic of debate. The ability to reliably produce devices which endure erase/write cycling and retain data for extended periods of time has been questionable. Recent improvements in IC processing has given rise to claims of enhancements in both of these areas. Non-volatile memories are attractive in many automotive electronic applications where battery backup is neither convenient or feasible, but because of reliability concerns they have not found their way into critical applications. In applications like odometer or emission control calibrations it is imperative that memory retention is assured. In order to verify the reliability of the various available non-volatile memory devices, an accelerated test program was instituted.
Technical Paper

Air Toxics: A Comparison of the Gas - and Particle-Phase Emissions from a High-Emitter Vehicle with Those from a Normal-Emitter Vehicle

1994-03-01
940581
A study was carried out to increase our understanding of the emissions of air toxics from normal and high-emitting vehicles. This study is part of a larger study on fuel effects in high-emitting vehicles, and is part of the Auto/Oil Air Quality Improvement Research Program (AQIRP). Detailed measurements were carried out on the emissions of two vehicles run on industry-average gasoline. The two vehicles, having similar emissions control technologies, represent a high-emitting vehicle and a normal-emitting vehicle. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out on the gas - and particle-phase non-regulated emissions. The vehicles were tested over the U.S. EPA UDDS driving schedule. The high emitter was highly variable with regard to emissions, but always operated rich of the stoichiometric point. Up to 46% of fuel carbon was emitted as CO and unburned HC for the high emitter, compared to less than 1.4% for the normal emitter.
Technical Paper

An Algorithm to Compensate for Air Charge Prediction Errors

2000-03-06
2000-01-0258
Various methods are available to predict future cylinder air charge for improved air/fuel control. However, there can never be perfect prediction. This paper presents an algorithm to correct for imperfect cylinder charge prediction. This is done by expanding the air/fuel control boundary to include the catalyst, and correcting prediction errors as soon as possible using small corrective changes to later cylinder fuel inputs. The method was experimentally tested and showed improved air/fuel control as indicated by reduced variability of catalyst downstream air/fuel ratio. Additional vehicle testing showed potential to further reduce emissions.
Technical Paper

An Urea Lean NOx Catalyst System for Light Duty Diesel Vehicles

1995-10-01
952493
Future European air quality standards for light duty diesel vehicles will include stringent NOx emission regulations. In order to meet these regulations, a lean NOx catalyst system may be necessary. Since the catalytic removal of NOx is very difficult with the large concentration of oxygen present in diesel exhaust, a reductant is usually added to the exhaust to increase the NOx conversion. This paper describes a lean NOx catalyst system for a Transit light-duty truck which uses a reductant solution of urea in water. In this work, a microprocessor was used to vary the amount of the reductant injected depending on the operating conditions of a 2,5 L naturally aspirated HSDI engine. The NOx conversions were 60% and 80% on the current European driving cycle and the U.S. FTP cycles, respectively. Data on the emissions of HC, CO, NOx, particulate mass and composition, individual HC species, aldehydes, PAH and most HC species were evaluated.
Technical Paper

Application of Catalyzed Hydrocarbon Traps to Reduce Hydrocarbon Emissions from Ethanol Flex-Fuel Vehicles

1999-10-25
1999-01-3624
Catalyzed hydrocarbon traps have shown promise in reducing cold-start tailpipe hydrocarbon emissions from gasoline powered vehicles. In this paper, we report the use of catalyzed hydrocarbon trap technology to reduce the non-methane hydrocarbon emissions from a flex-fuel vehicle that can operate on fuel mixtures ranging from pure gasoline to 85% ethanol/15% gasoline. We have found that hydrocarbon traps show a substantially greater reduction in hydrocarbon emissions when used with ethanol fuel than with gasoline. We present laboratory and vehicle test results that show that tailpipe non-methane hydrocarbon emissions from a flex-fuel vehicle can be reduced by 43% when using 85% ethanol/15% gasoline fuel and 16% when using gasoline fuel from a baseline exhaust system using a three-way catalyst. These results were obtained using a catalyzed hydrocarbon trap specifically formulated for use with ethanol fuel.
Technical Paper

Calculating the Rate of Exothermic Energy Release for Catalytic Converter Efficiency Monitoring

1995-10-01
952423
This paper reports on the development of a new methodology for OBD-II catalyst efficiency monitoring. Temperature measurements taken from the center of the catalyst substrate or near the exterior surface of the catalyst brick were used in conjunction with macroscopic energy balances to calculate the instantaneous rate of exothermic energy generation within the catalyst. The total calculated rate of exothermic energy release over the FTP test cycle was within 10% of the actual or theoretical value and provided a good indicator of catalyst light-off for a variety of aged catalytic converters. Normalization of the rate of exothermic energy release in the front section of the converter by the mass flow rate of air inducted through the engine was found to provide a simple yet practical means of monitoring the converter under both FTP and varying types of road driving.
Technical Paper

Cascade Processing of NOx by Two-Step Discharge/Catalyst Reactors

2001-09-24
2001-01-3509
We present here a phenomenological analysis of a cascade of two-step discharge-catalyst reactors. That is, each step of the cascade consists of a discharge reactor in series with a catalyst bed. These reactors are intended for use in the reduction of tailpipe emission of NOx from diesel engines. The discharge oxidizes NO to NO2, and partially oxidizes HC. The NO2 then reacts on the catalyst bed with hydrocarbons and partially oxidized HCs and is reduced to N2. The cascade may be essential because the best catalysts for this purpose that we have also convert significant fractions of the NO2 back to NO. As we show, reprocessing the gas may not only be necessary, but may also result in energy savings and increased device reliability.
Technical Paper

Catalytic Converter Vehicle System Performance: Rapid versus Customer Mileage

1971-02-01
710292
Two types of catalysts were tested in a fleet of twenty-four 1969 vehicles, operated in customer-type urban driving regimes, on both leaded and nonleaded fuels over a period of 18 months. The two catalyst types and the converter systems chosen for this evaluation were selected on the basis of information obtained from an earlier test program involving four cars that were durability tested on a more rapid “test track mileage accumulation cycle.” Comparisons are made between the vehicles running rapid mileage accumulation and the vehicles running slower customer-type mileage accumulation. Catalyst life and system performance depreciation were relatively similar in both fleets and did not seem to be significantly affected by the method of mileage accumulation. The 24-vehicle fleet was equipped with a programmed protection system (PPS) designed to protect the catalysts from damage due to over-temperature operation. Problems with this prototype protection system are discussed.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

2001-09-24
2001-01-3671
An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

Characterization of Automotive Catalysts Exposed to the Fuel Additive MMT

1989-02-01
890582
A series of in-use catalysts having mileage of 22,000 to 43,000 miles was characterized to determine the effect of the fuel additive MMT. The analytical techniques included visual examination, x-ray fluorescence, x-ray diffraction, optical microscopy, scanning electron microscopy, and electron raicroprobe. In addition, catalyst activity was measured and compared to the catalyst activity from a pulsator aged catalyst without the MMT additive in the feed gas composition. Characterization results show a significantly thick layer (5-20 microns) covering the surface of the catalysts which results in the increase of mass transfer resistance. Steady state R and light-off measurements indicated catalyst efficiency is also significantly reduced as exposure to MMT is increased.
Technical Paper

Characterization of Phosphates Found in Vehicle-Aged Exhaust Gas Catalysts: A Raman Study

2006-04-03
2006-01-0410
Phosphorus contamination from engine oil additives has been associated with reduced performance of vehicle-aged exhaust gas catalysts. Identifying phosphorus species on aged catalysts is important for understanding the reasons for catalytic performance degradation. However, phosphorus is present only in small quantities, which makes its detection with bulk analytical techniques difficult. Raman microscopy probes small regions (a few microns in diameter) of a sample, and can detect both crystalline and amorphous materials. It is thus ideal for characterizing phosphates that may have limited distribution in a catalyst. However, suitable Raman spectra for mixed-metal phosphates that might be expected to be present in contaminated catalysts are not generally available.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
X