Refine Your Search

Topic

Search Results

Technical Paper

A Study of Combustion Control Parameter Optimization in a Diesel Engine Using Cylinder Pressure

2014-04-01
2014-01-1352
In diesel engine development, fuel consumption, emissions and combustion noise have been main development objectives for fuel economy, low emissions and NVH. These main objectives can be achieved with advanced engine technologies. As electronic actuating systems are widely applied on diesel engines, elaborate control is required. This is because the main development targets are greatly affected by engine control parameters but frequently have a trade-off relationship. Therefore, the optimization of combustion control parameters is one of the most challenging tasks for improvement. As an efficient method, the DOE methodology has been used in engine calibration. In order to develop a mathematical model, the input and output values must be measured. Unlike other variables, combustion noise has been continually reported to have better indication method in simplified way. In this paper, advanced noise index from cylinder pressure signal is applied on engine test.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Technical Paper

An Experimental Comparison Between Air-Assisted Injection System and High Pressure Injection System at 2-Stroke Engine

1995-02-01
950270
This study presents engine test results of HMC's piston-ported 2-stroke gasoline engine. This single cylinder engine of 400cc displacement has featured in direct injection(DI) of fuel and external blower scavenging of air. Two different concepts of DI system were adopted, one is high pressure fuel injection(HPFI) system for solid fuel only and the other is low pressure air-assisted fuel injection(AAFI) system. Two kinds of engines with different scavenging intake port shapes and areas were tested to find the effect of scavenging port type on engine performance. Also tested were trends of BSFC, BSHC and BSCO versus fuel injection timing and engine speed with HPFI and AAFI, respectively. Power and boost pressure at full load and BSFC and BSHC at part load were tested.
Technical Paper

Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery

2010-04-12
2010-01-1074
Due to aging of a battery over lifetime, the rated power and nominal energy capacity will be reduced compared with the initial rated power and capacity. These result in influences on the vehicle driving performance and fuel economy. To monitor and diagnose the aging of the battery, in this paper, the method of predicting the available rated power and energy capacity of Li-ion battery under in-vehicle condition is proposed. Under constant power test, available power is calculated from the estimated parameters using recursive least square method. Further, available energy capacity is evaluated through SOH(cn) defined by the ratio of initial state-of-charge (SOC) variation to present SOC (\GdSOC ⁿ /ΔSOC ⁿ ) variation under arbitrary in-vehicle driving cycles. To verify the proposed method, experiments for aging Li-ion battery are performed in hybrid electric vehicle.
Technical Paper

Design for NVH Performance and Weight Reduction in Plastic Timing Chain Cover Application

2014-04-01
2014-01-1043
Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

2019-04-02
2019-01-0883
This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Development of DC Motor Driven 3 Way Valve for FCEV

2013-03-25
2013-01-0127
Fuel cell vehicle is loaded with translating equipment, which converts chemical energy to electrical energy. The equipment has maximum power efficiency at a specific temperature when several operating conditions are met. To control the coolant temperature, the existing system uses a wax-type thermostat, which operates as the wax elements contracts and expands. However, there are several problems with the wax-type thermostat; it is impossible to measure real-time temperature and high pressure drop. To mitigate these problems, we developed a DC motor-driven 3-way valve that can control real-time temperature and low pressure drop. Application of the 3-way valve will improve fuel cell vehicle power and fuel efficiency.
Technical Paper

Development of Eco-Driving Guide System

2011-10-06
2011-28-0034
The Eco-driving indicator is a colored lamp on a cluster to lead a driver to smoothen acceleration of a vehicle. Informed by the indicator, a driver learns how deep to push a gas pedal for a better fuel economy. The Eco-driving guide system outputs a vehicle fuel efficient state by the Eco-driving indicator. It is based on BSFC map, engine torque map, A/T shift pattern data, engine operation status and transmission operating status. With the Eco-driving guide system, vehicle fuel efficiency can be improved by 4∼26%.
Technical Paper

Development of Nu 2.0L CVVL Engine

2014-04-01
2014-01-1635
Hyundai Motor Group launched a Continuously Variable Valve Lift (CVVL) engine in 2012. The engine is equipped with HMG's unique CVVL mechanism and is characterized by low fuel consumption, high performance and its responsiveness. The CVVL mechanism is based on a six-linkage mechanism and has advantages of compactness and durability. The engine is a 4 cylinder In-Line, 2.0L gasoline engine and is designed for a mid-sized passenger car. The engine increases fuel efficiency by 7.7% and the peak engine power by 4.2%. One of the most challenging issues in producing a CVVL engine is the valve lift deviations throughout the engine cylinders. The valve cap shim and set screw were designed to adjust the valve lift deviations. Cap shim thickness is chosen by measuring the valve top height, and shoe lift of the cam carrier assembly. The set screw is an auxiliary device to adjust the valve lift deviation.
Technical Paper

Development of Supercarburized Tappet Shim to Improve Fuel Economy

2000-03-06
2000-01-0613
A newly developed surface hardening process, supercarburizing, has been developed for the application of tappet shim to improve fuel economy. Supercarburizing has been introduced to increase resistance of wear and pitting performance and was designed to have supersaturated carbon surface layer and further to have spheroidized carbide morphology. In this presentation, the process variables, such as surface microstructure, morphology and distribution of carbide precipitation, will be discussed via the results of friction loss tests. At an entire speed range investigated, the application of supercarburized tappet shim improved fuel economy with 25∼30% in terms of valve train itself and with 4∼5% concerning on the gross engine performance. The fuel economy analysis showed that the improved surface hardening process of tappet shim increased fuel economy of vehicle about 1.4∼3.6%.
Technical Paper

Development of Two Oil Pumping System for Automatic Transmission

2014-04-01
2014-01-1766
The efforts to improve automatic transmission (AT) efficiency for vehicle fuel economy are constantly continuing. In an AT the oil pump is the largest power loss factor. Therefore the effect on fuel economy is very high. The AT oil pump system has structural contradictions (high pressure × high flow), and the efforts to improve these areas are concentrated. In this paper, a two oil pumping system was designed to improve the efficiency and performance of a 6 speed AT installed in a Hybrid Electric Vehicle (HEV) [1], and the improvement was confirmed by a prototype experiment. As a result of the experiment, two pumping system was shown to improve vehicle fuel economy while reducing noise and oil pressure vibration.
Technical Paper

Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy

2014-04-01
2014-01-1639
It is difficult to reach higher compression ratios of the gasoline engine even though higher compression ratios improve thermal efficiency. One of the barriers is large torque drop led by knocking. Extensive researches to suppress knocking of the gasoline engine have been conducted. It is focused on lowering the temperature of fuel mixture in combustion chamber at compression top dead center (TDC). This paper covers the new valvetrain system to decrease the temperature of exhaust valve bottom (combustion) side. Hollow head and stem sodium filled valve (HHSV) have shown more heat transfer from combustion chamber to valve seat insert and valve guide, and higher thermal conductivity valve seat insert (HVSI) and valve guide (HVG) help to decrease valve temperature lower by higher heat transfer.
Technical Paper

Development of Vibration Suppression Control Strategy for Motor System of Eco-Friendly Vehicles

2014-04-01
2014-01-1874
Development of eco-friendly vehicles have risen in importance due to fossil fuel depletion and the strengthened globalized emission control regulatory requirements. A lot of automotive companies have already developed and launched various types of eco-friendly vehicles which include hybrid vehicles (HEVs) or electric vehicles (EVs) to reduce fuel consumption. To maximize fuel economy Hyundai-Kia Motor Company has introduced eco-friendly vehicles which have downsized or eliminated vibration damping components such as a torque converter. Comparing with Internal Combustion Engine(ICE) powered vehicles, one issue of the electric motor propulsion system with minimized vibration damping components is NVH (Noise, Vibration and Harshness). The NVH problem is caused by output torque fluctuation of the motor system, resulting in the degradation of ride comfort and drivability.
Technical Paper

Improvement of Manufacturing and Evaluation Technology for the Light Weight Brake Disc Composed of Hybrid Type Material

2014-04-01
2014-01-1009
Reducing unsprung mass of the car is a representative method to enhance the ride & handling performance and fuel efficiency. In this study, brake disc weight is reduced 15∼20% using a hybrid type material. The basis for this study is the separation of the friction surface and HAT(mounting part). Aluminum material is applied in the HAT for a light weight effect. Gray iron is applied in the friction surface section to maintain braking performance. Two types of joining between aluminum and cast iron are developed. One is the aluminum casting method utilizing a gray iron insert and the other is a bolted assembly method. Detailed structure, process and material are optimized using try-out & dynamometer experiments. The Reliability of this development is proved through durability (dynamometer and vehicle) testing.
Journal Article

Recent Advances in the Development of Hyundai · Kia's Fuel Cell Electric Vehicles

2010-04-12
2010-01-1089
Wide attention to fuel cell electric vehicles (FCEVs) comes from two huge issues currently the world is facing with: the concern of the petroleum reserves depletion due to consequent oil dependence and the earth global warming due in some extent to vehicle emissions. In this background, Hyundai, along with its sister company Kia, has been building the FCEVs and operating their test fleet with several tens of units at home and abroad. Since 2004, 32 passenger vehicles have been offered for the Department of Energy's controlled hydrogen fleet and infrastructure demonstration and validation project in the U.S. In the meantime, from 2006, 30 passenger vehicles as well as four buses, featuring the in-house developed fuel cell stack and its associated components, are currently under the domestic operation for the FCEV learning demonstration led by the Ministry of Knowledge and Economy.
Technical Paper

Study on Optimization for LNT+SCR System of Diesel Vehicle to Comply with the LEV3 Regulations

2014-04-01
2014-01-1529
This paper describes how to meet LEVII ULEV70 emission standards and minimize fuel consumption with the combined NOx after-treatment (LNT+SCR) system for diesel vehicles. Through analysis of LNT's functionality and characteristics in a LNT+SCR combined after-treatment system, allowed a new control strategy to be established, different from the existing LNT-only system. In the 200°C or higher condition where SCR can provide the most stable NOx conversion efficiency, rich regeneration of LNT was optimized to minimize LNT deterioration and fuel consumption. Optimized mapping between rapid heat up strategy and raw NOx reduction maximized LNT's NOx conversion efficiency during the intervals when it is not possible for SCR to purify NOx This study used bench aged catalysts which were equivalent to 150K full useful life.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

2019-04-02
2019-01-0245
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

The Design and Development of the Hyundai Alpha Engine

1989-11-01
891185
Main design features and some of the development work carried out on the first new engines to be produced in-house by Hyundai Motor Co. are described. The Alpha family of multi-valve, four cylinder engines comprises 1.3 and 1.5L naturally aspirated units and a 1.5L turbocharged version. Modern features are incorporated in the engines in order to provide higher performance and good fuel economy with excellent durability at reasonable cost. Hyundai Motor Co. (HMC) was established in 1967 and, in the following year, commenced production of passenger cars for the domestic market, using CKD components supplied by Ford of Europe. In 1974 the Pony saloon car entered production; this used mainly locally produced components but most of the major items, including the power train - engine and gearbox - were manufactured under the license from Mitsubishi Motors.
X