Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

An Optimal Method for Prediction of Engine Operating Points for an Effective Correlation in Fuel Economy Benchmarking

2020-09-25
2020-28-0346
It is imperative that all automobile manufacturers conduct vehicle level benchmarking at the initial stage of any new project. From the benchmark information, the manufacturers can set relevant targets for their own vehicles under development. In this regard, an accurate prediction of the engine operating points can improve the correlation of the measured fuel economy of the benchmark vehicle. The present work describes a novel method that can be used for the accurate prediction of the engine operating points of any benchmark vehicle. Since the idea of instrumenting the crankshaft/driveshaft with torque transducers is a costlier and time-consuming process, the proposed method can be effective in reducing the benchmarking. Hence, the objective of this work is to develop a mathematical model to calculate the real-time engine operating points (engine speed and torque) using parameters like vehicle speed, accelerator pedal map, driveline inertia, vehicle coastdown force and gradient.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Determination of Principal Variables for Prediction of Fuel Economy using Principal Component Analysis

2019-01-09
2019-26-0359
The complexity of Urban driving conditions and the human behavior introduces undesired variabilities while establishing Fuel economy for a vehicle. These variabilities pose a great challenge while trying to determine that single figure for assessment of vehicle’s fuel efficiency on an urban driving cycle. This becomes even more challenging when two or more vehicles are simultaneously evaluated with respect to a reference vehicle. The attempt to fit a generalized linear model, between Fuel Economy as predicted variable and components of a driving cycle as predictor variables produced oxymoronic and counter-institutive results. This is primarily due to existence of multi-collinearity among the predictor variables. The context of the study is to consider the event of driving on a cycle as a random sampling experiment. The outcome of a driving cycle is summarized into a list of predictor variables or components.
Technical Paper

Development of 2.2 L CRDe Engine Meeting BS4 Emission Norms without the Aid of EGR Cooling

2018-07-09
2018-28-0069
The never-ending concern on the air quality and atmospheric pollution has paved way for more stringent emission legislations. Existing Diesel engine hardware face several problems on meeting the tough emission limits and they require more additional features to comply with the emission standards. The current research work throws light on the air path control approach to meet the Bharat stage 4 emission norms on 2.2 L Sports Utility Vehicle engine operating with EGR cooler and the techniques followed to meet the same emission norms without the application of EGR cooler which was successfully implemented on the vehicles enabling reduction of hardware. Also the migration of 2.2 L engine from 88 kW operating on Compression ratio 18.5 to 103 kW at a lower Compression ratio of 16.5 is a challenging process to achieve Nitrogen oxide emissions reduction at part loads.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
Technical Paper

Effect of Injector Cone Angle and NTP on Performance and Emissions of BS6 Engine

2019-10-11
2019-28-0108
The combustion phenomenon of diesel engines has got a very major impact on the performance and exhaust emission levels. Several important factors like engine components design, combustion chamber design, Exhaust gas recirculation, exhaust after treatments systems, engine operating parameters etc. decide the quality of combustion. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum timing of injection. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which lead to the selection of perfect injector for a given engine. This paper focusses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Evaluation and Selection of Turbocharger Meeting BS6 Emission Norms for 1.99l Engine

2019-01-09
2019-26-0058
Migration to BS6 emission norms from BS4 levels involves strenuous efforts involving advanced technology and higher cost. The challenging part is on achieving the stringent emission norms without compromising the engine fuel economy, performance and NVH factors. Selection of hardware and attaining an optimal behaviour is therefore vital. This article focuses on the evaluation of three different configuration of turbochargers for the same engine to meet the BS6 emission norms and performance. The turbocharger samples used measure the same compressor diameter with varying trim ratios. Simulation and testing of turbochargers ensured positive results for confirmation of the system. Parameters like low speed torque, smoke and compressor efficiency were evaluated and analysed for all configurations. The safe limits of surge and choke regions of all the compressors were also studied and verified.
Technical Paper

Factors affecting Regeneration interval of a Diesel Particulate Filter and their influence on BSV emission application

2015-01-14
2015-26-0106
With the implementation of stringent PM emission norms in various countries for diesel vehicles, the legislation demands a PM mass limit as low as 4.5mg/km in the NEDC cycle, starting from Euro5. This makes the usage of Diesel Particulate Filters (DPF) mandatory. The same is going to be mandated for upcoming BSV emission norms in India. Thus it becomes imperative to know the functional aspects of a DPF and their impacts. Basically there are two major functions of a DPF- Soot mass filtration and Soot burning or Regeneration. This paper highlights usage of DPF in Indian context from the perspective of one of the major aspects of DPF regeneration-Regeneration Interval, which is basically governed by vehicle/engine out smoke. Regeneration interval also has direct or indirect influence on life of engine of a vehicle and average fuel economy of a vehicle which will also be touched upon herein.
Technical Paper

Investigation Of Variable Displacement Oil Pump and Its Influence on Fuel Economy for a 1.5 L, 3 Cylinder Diesel Engine

2023-04-11
2023-01-0465
The Introduction of Corporate Average Fuel Economy (henceforth will be addressed as CAFE) regulations demand suitable technological upgrades to meet the significant increase in targets of vehicle fleet fuel economy. Engine Downsizing and Friction Reduction measures help in getting one step closer to the target. In a Conventional Oil Pump, the pump discharge flow and pressure are a direct function of operating speed. There is no control over lubricant flow which results in increased power and fuel consumption due to its unnecessary pumping characteristics irrespective of the actual engine demand. This paper discusses the introduction of a variable displacement oil pump (henceforth will be addressed as VDOP) that was adapted to a 1.5-liter 3 Cylinder Diesel Engine. This approach helps the system to reduce parasitic losses as the oil flow is regulated based on the mechanical needs of the engine. The flow is regulated with help of a solenoid valve which receives input from the ECU.
Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Methodological Approach for Matching Gear and Final Drive Ratio for Better Fuel Economy, Performance and Drivability

2018-04-03
2018-01-0865
Fuel economy, performance and drivability are the three important parameters for evaluating the vehicle performance. Powertrain matching plays a major role in meeting the above targets. Fuel economy is measured based on city, highway and some user defined driving cycles which can be considered as real world usage profiles. Performance and Drivability is evaluated based on the in-gear, thru-gear (acceleration performance) and grade-ability performance. The load collective points of the engine greatly influence the engines performance, fuel economy and emissions, which in-turn depends on the N/V ratio of the vehicle. The optimal selection of gear and final drive ratios plays a key role in the optimization of the Powertrain for a particular vehicle. The current study involves dynamic simulation of the vehicle performance and fuel economy at transient engine test-bed for different gear and final drive ratio combinations using AVL DynoExcat-dynamometer.
Technical Paper

Novel Approaches for Model-Based Development - Part I: Developing a Real-World Driver Model

2016-04-05
2016-01-0323
OEMs these days are focusing on front loading the activities to Virtual Test Environment (VTE) based development owing to high development cost and complexity in achieving repeatability during testing phase of vehicle development,. This process not only helps in reducing the cost and time but also helps in increasing the maturity and confidence level of the developed system before actual prototype is built. In the past, extensive research has happened for increasing the fidelity of VTE by improving plant model efficacy which involves powertrain and other vehicle systems. On the other hand, improving the precision of driver model which is one of the most complex nonlinear systems of virtual environment still remains a challenge. It is apparent that various drivers show different behavior in real world for a given drive profile. While modelling a driver for a VTE, the real world driver attributes are seldom considered.
Technical Paper

Optimization of EGR Mixer to Minimize Thermal Hot Spot on Plastic Duct & Soot Deposition on Throttle Valve Using CFD Simulation

2019-01-09
2019-26-0286
In recent time, with inception of BS VI emission regulation with more focus on fuel economy and emission, many engine parts which were conventionally made from metal are getting replaced with plastic components for reducing weight to attain better fuel economy. EGR is commonly used technique to reduce emissions in diesel engine along with after treatment devices. EGR reduces peak combustion temperature inside the combustion chamber thereby reducing NOx. EGR is bypassed from the exhaust manifold, cooled down in EGR cooler and mixed with intake air at upstream of the intake manifold. Throttle valve is used for controlling the charged air flow to cylinders for different vehicle operating conditions. With compact engine layout EGR mixer are often located near to throttle valve thereby increasing the possibility of soot deposition on throttle valve.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
X