Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Assessment of CFD Methods for Large Diesel Engines Equipped with a Common Rail Injection System

2000-03-06
2000-01-0948
A KIVA-based CFD tool has been utilized to simulate the effect of a Common-Rail injection system applied to a large, uniflow-scavenged, two-stroke diesel engine. In particular, predictions for variations of injection pressure and injection duration have been validated with experimental data. The computational models have been evaluated according to their predictive capabilities of the combustion behavior reflected by the pressure and heat release rate history and the effects on nitric oxide formation and wall temperature trends. In general, the predicted trends are in good agreement with the experimental observations, thus demonstrating the potential of CFD as a design tool for the development of large diesel engines equipped with Common-Rail injection. Existing deficiencies are identified and can be explained in terms of model limitations, specifically with respect to the description of turbulence and combustion chemistry.
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

2013-04-08
2013-01-0203
The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Evaluation of Off-Highway Vehicle Cab Noise and Vibration Using Inverse Matrix Techniques

1999-09-14
1999-01-2815
Noise Path Analysis techniques (NPA) have been developed and refined by the automotive industry for structure-borne noise and vibration evaluation of their products. Off-highway vehicles, particularly those with enclosed cabs, are excellent candidates for the application of these techniques. Like automobiles, many off-highway machines are typically driven by a rotating power source, have a well-defined acoustic receiver space, and use some form of isolation between source and receiver sub-systems. These structural characteristics make NPA a useful tool for identifying dominant sources and energy transfer paths. The objectives of this paper are to revisit the fundamental theory of matrix inversion as it applies to NPA techniques, and to address the common setup and measurement issues encountered when acquiring noise path data on off-highway machines. A general overview of the procedures involved in applying NPA to an off-highway machine will be presented.
Technical Paper

Material Damping Properties: A Comparison of Laboratory Test Methods and the Relationship to In-Vehicle Performance

2001-04-30
2001-01-1466
This paper presents the damping effectiveness of free-layer damping materials through standard Oberst bar testing, solid plate excitation (RTC3) testing, and prediction through numerical schemes. The main objective is to compare damping results from various industry test methods to performance in an automotive body structure. Existing literature on laboratory and vehicle testing of free-layer viscoelastic damping materials has received significant attention in recent history. This has created considerable confusion regarding the appropriateness of different test methods to measure material properties for damping materials/treatments used in vehicles. The ability to use the material properties calculated in these tests in vehicle CAE models has not been extensively examined. Existing literature regarding theory and testing for different industry standard damping measurement techniques is discussed.
Technical Paper

Reliability-Based Robust Design Optimization Using the EDR Method

2007-04-16
2007-01-0550
This paper attempts to integrate a derivative-free probability analysis method to Reliability-Based Robust Design Optimization (RBRDO). The Eigenvector Dimension Reduction (EDR) method is used for the probability analysis method. It has been demonstrated that the EDR method is more accurate and efficient than the Second-Order Reliability Method (SORM) for reliability and quality assessment. Moreover, it can simultaneously evaluate both reliability and quality without any extra expense. Two practical engineering problems (vehicle side impact and layered bonding plates) are used to demonstrate the effectiveness of the EDR method.
Technical Paper

Splashing Criterion and Topological Features of a Single Droplet Impinging on the Flat Plate

2018-04-03
2018-01-0289
This paper aims to provide the experimental and numerical investigation of a single fuel droplet impingement on the different wall conditions to understand the detailed impinging dynamic process. The experimental work was carried out at the room temperature and pressure except for the variation of the impinged wall temperature. A high-speed camera was employed to capture the silhouette of the droplet impinging on wall process against a collimated light. Water, diesel, n-dodecane, and n-heptane were considered as four different droplets and injected from a precision syringe pump with the volume flow rate of 0.2 mL/min at various impact Weber numbers. The impingement outcomes after droplet impacting on the wall include stick, spread, rebound and splash, which depend on the controlling parameters of Weber number, Reynolds number, liquid and surface properties, etc.
Technical Paper

The Use of Unique Time History Input Excitation in the Dynamic Characterization of Automotive Mounts

2003-05-05
2003-01-1463
The traditional method of dynamic characterization of elastomers used in industry has largely been based on sinusoidal input excitation. Discrete frequency sine wave signals at specified amplitudes are used to excite the elastomer in a step-sine sweep fashion. This paper will examine new methods of characterization using various broadband input excitations. These different inputs include continuous sine sweep (chirp), shaped random, and acquired road profile data. Use of these broadband data types is expected to provide a more accurate representation of conditions seen in the field, while helping to eliminate much of the interpolation that is inherent with the classic discrete step-sine technique. Results of the various input types are compared in this paper with those found using the classic discrete step-sine input.
X