Refine Your Search

Topic

Search Results

Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

A Method To Evaluate Passenger Thermal Comfort In Automobile Air Conditioning Systems

2017-01-10
2017-26-0150
In present day passenger cars, Mobile Air Conditioning (MAC) system is one of the essential features due to rise in overall ambient temperatures and comfort expectation of customers. During the development of MAC system, the focus is on cooling capacity of system for maintaining in-cabin temperatures. However, parameters like solar radiation, air velocities at occupant, relative humidity, metabolic rate and clothing of occupants also influence occupant’s thermal comfort and normally not considered in design of the MAC system. Subjective method is used to evaluate thermal comfort inside vehicle cabin which depends mainly on human psychology. To better understand the effect and minimize the human psychological factors a large sample of people are required. That process of evaluating the comfort inside the vehicle cabin is not only time consuming but also impractical.
Technical Paper

Analysis of Automotive Control Pedals Ergonomics through Mathematical Modelling Based on Human Anthropometry

2017-01-10
2017-26-0252
Vehicle Ergonomics is one of the most vital factor to be considered in vehicle design and development, as the customer wants a comfortable and performance oriented vehicle. An uncomfortable driving posture can lead to painful driving experiences for longer hauls. The control pedals viz. Accelerator, Brake and clutch pedal (ABC Pedals), are the most frequently used parts in the vehicle, their proper positioning with respect to human anthropology is of prime importance, from driver comfort viewpoint. The methodology currently used for optimizing ergonomics with respect to the positioning of pedals in a vehicle included; measuring anthropometric angles manually with the help of H-Point Machine, subjective jury analysis and through software like RAMSIS, JACK, etc. Manual measurement doesn’t give the flexibility of iterations for optimization. The subjective analysis is based on insinuations thereby, cannot be standardized.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Body Block FE Model Development and Correlation with Physical Tests

2017-01-10
2017-26-0293
Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Technical Paper

Crash Pulse Characterization for Restraints System Performance Optimization

2015-01-14
2015-26-0152
The vehicle crash signature (here on referred as crash pulse) significantly affects occupant restraints system performance in frontal crash events. Restraints system optimization is usually undertaken in later phase of product development. This leads to sub-optimal configurations and performance, as no opportunity exists to tune vehicle structure and occupant package layouts. In concept phase of development, crash pulse characterization helps to map occupant package environment with available structure crush space and stiffness. The crash pulse slope, peaks, average values at discrete time intervals, can be tuned considering library of restraints parameters. This would help to derive an optimal occupant kinematics and occupant-restraints interaction in crash event. A case study has been explained in this paper to highlight the methodology.
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

Elastomer Blend for Vibration Isolators to Meet Vehicle Key on - Key off Vibrations and Durability

2010-10-05
2010-01-1986
Success of the vehicle in the market depends on comfort provided while usage, which also include level of noise, vibration and harshness (NVH). In order to achieve good cabin comfort, the NVH levels have to be as low as possible. Powertrain is main source of NVH issues on vehicle and typically mounted on vehicle using rubber isolators. The dynamic characteristics of rubber isolators play vital role in reducing the vibrations transfer from powertrain to vehicle structure while operation and during dynamic conditions. Traditionally, isolators are manufactured using Natural Rubber (NR) to meet functional requirements which include vibration isolation and durability. At times either of above requirements has to be compromised or sacrificed due to the limitation in compounding process and other practical problems involved with manufacturing of rubber parts.
Technical Paper

Empirical Investigation of Various Mobility Solutions for Urban Transport Planning: A Study from Western India

2022-10-05
2022-28-0314
Transportation has significant and long-lasting economic, social and environmental impacts which makes it an important dimension of urban sustainability. The World is witnessing rapid changes in modern traveling behavior, and efforts are continuously being made to stimulate sustainable mobility solutions with smart policies, new business models, and advanced technologies (connected cars, sensors, electrification). However, the shift is gradual in India when compared to developed countries due to unique barriers to emerging green mobility solutions. This paper empirically investigates public travel satisfaction and the primary factors for the selection of modes for different types of commutes. Quantitative data were collected including socio-demographic, travel mode choices, and preferred future mobility solutions from the western states of India.
Technical Paper

Energy Based Analytical Study of Effect of Engine Calibration, Clutch Modulation on the Life of Dry Clutch in View of City Traffic Using Road Load Data

2019-01-09
2019-26-0331
Single plate dry clutch is one of the most abuse components in the vehicle. With the growing population of traffic in cities, useful life of clutch is affected drastically which is evident from the rise in complaints on clutch from metropolitan cities. The governing design parameter, which affects the life of clutch, is the energy dissipated in clutch per unit area of friction lining of clutch disc. The life of clutch is affected by many factors like vehicle weight, engine torque, driveline ratios, friction lining, size of clutch, which are taken into consideration during design stage of the clutch. Apart from these factors, one more factor, engine calibration, affects the clutch life drastically. However, it is not taken into consideration during design stage owing to its inherent nature as it gets matured over the vehicle development program.
Technical Paper

Energy Efficient Hydraulic Power Assisted Steering System (E2HPAS)

2012-04-16
2012-01-0976
A hydraulic-assisted power steering system on a vehicle has a steering pump which is directly driven from the engine continuously. In real world, the assistance from the steering pump is useful only while maneuvering. During a typical highway drive, assistance from this power steering pump remains unused for majority (76%) of the time; although the continuously rotating power steering pump keeps consuming energy from the engine. An electronic controller has been provided for the electro-magnetic pairing device of the power steering pump in order to provide assistance for steering based on driver demand only. The electromagnetic pairing device integrated on the steering pump can be made to engage/disengage based on the driver demand through the electronic controller.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Evaluation of Interdependent Behavior of Dual Mass Flywheel (DMF) and Engine Starting System

2010-04-12
2010-01-0188
Interdependency of automotive transmission aggregates on electrical/ electronics systems is increasing day by day, offering more comfort and features. For a system integrator, it becomes very much important while selecting/designing any such component to take into consideration the relationship between such interdependent components from performance as well as endurance point of view. DMF failures due to inadequate starting system, is a major stumbling block in development of DMF for a particular vehicle application. The interface of DMF and starting system of a vehicle makes it essential to consider the effect of one on another. The study shows that the majority of DMF failures happen because of resonance phenomenon in the DMF during engine starting. The improper selection of starter motor makes the DMF more vulnerable for such failures.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

Innovative Concept of Front Disc Brake Module with Weight Reduction and Cost Optimisation

2014-09-28
2014-01-2505
The customer satisfaction index is higher for disc brake systems because of the advantages like less reaction time, shorter stopping distance and improved pedal feel compared to drum brake system. In current competitive market scenario and as per customer requirements, front disc brake module is becoming necessary. The brake system design is challenging task due to stringent performance meeting criteria and packaging constraints with weight optimization. Brake disc is very important component in the brake system which is expected to withstand high braking torque and dissipate heat during braking event. In existing car to replace front drum brake with disc brake module, vehicle needs to undergo legislative verifications and certifications with respect to pedal effort, stopping distance and circuit failed conditions etc.
Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Practical Approach to Enhance Gear Shift Quality in Automatic Transmissions

2021-04-06
2021-01-0688
Passenger utility vehicles like car, SUVs, MPVs are used in wide application all over the world. Luxuries are becoming essential features of product mix along with comfort and ergonomics. Customer desires best shift quality with emerging technologies like AT, DCT, CVT, etc. and every OEM is working hard to achieve it. It is very difficult to satisfy the customer desire because of diversities in demographics and geographic. Gear shift quality (GSQ) is very crucial touch point in overall drive feel of vehicle. It consist of various parameters like mode selection feel, precision, comfort, select Noise, etc. It demands tradeoff practices among various parameters as stated. In this paper, external mode selection system of automatic transmission is explained. Various contributing parameters are explained with practical design approach for detent profile, mode selection mechanism, cable & dampers, etc.
Journal Article

Ride and Comfort Measurements - A Challenge of Subjective and Objective Correlation

2021-09-22
2021-26-0445
Traditionally, vehicle ride and comfort is evaluated, subjectively as well as objectively. Based on the outcome of subjective and objective tests, it is refined by optimizing primary suspension system, secondary suspension system, seating system, rubber bushings, frame and BIW for mass, stiffness, damping, geometry etc. Many a time subjective assessment results stands in contradiction to the objective assessment results; emphasizing need for having good correlation between subjective and objective test results. In such cases, it is ambiguous to decide suitable design refinement action and can lead to no improvement situation. Hence, it is essential to have concurring test procedures for subjective and objective ride evaluation. This paper describes a novel methodology to address the above said challenge. There are defined set of test events and measurement data points to be used in subjective and objective testing.
Technical Paper

Seat Structure Comfort Evaluation Using Pink Noise and Human/Dummy Transmissibility Correlation

2013-11-27
2013-01-2852
Vehicle floor vibration is the resultant of different road inputs damped through various transfer paths. Seat comfort, which depends on these floor vibrations, can be evaluated with a single input signal “Pink noise”; which constitutes various road inputs. Transmissibility of seat structure on a vibration shaker with pink noise input includes all possible responses of road inputs. Still, transmissibility profile at vehicle end and component level varies. This is due to the utilization of “dummy” on component level testing on vibration shaker, which acts as a dead weight with dissimilar damping characteristics of human. A transmissibility correlation between human and dummy is attained by replacing the dummy in place of human and actuating it to find the difference in contribution between them for different class of vehicles. This contribution extrapolation from the damping effects of human and dummy is applied on dummy transmissibility.
Technical Paper

Simulation Based Ventilated Seat Performance Correlation with Respect to Airflow and Noise

2023-05-08
2023-01-1081
Nowadays, a higher amount of time is being spent inside the vehicles on account of varied reasons like traffic, longer distances being travelled and leisure rides. As a result, better comfort and convenience features are added to make the driver and passenger feel at ease. Thermal comfort and acoustic isolation are the primary parameters looked at by both the customers and the original equipment manufacturers. Seats are one of the primary touch points inside the vehicle. Perspiration caused at the contact patch areas between the seats and passengers leads to high thermal discomfort. A ventilated seat, with or without an air-conditioning system, is one such attribute offered to improve passenger thermal comfort. Ventilation becomes even more essential for front-row seats, as these are more likely to be exposed to external solar loading through the front windshield.
X