Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Characteristics of Sub/Supercritical Gasoline and Iso-Octane Jets in High Temperature Environment

2019-04-02
2019-01-0289
Based on the temperature and pressure in the cylinder of GDI (Gasoline Direct Injection) engines under the common operating conditions, jets´ characteristics of gasoline and iso-octane at different fuel temperatures under the high ambient temperature were studied by means of high-speed photography and striation method. It is found that the supercritical gasoline jet shows the morphological collapse of jet center and the protrusion of the front surface, but the iso-octane jet doesn´t. Meanwhile, as the fuel temperature rises, the flash boiling and the interference between adjacent plumes affect the gasoline jet, and cause the center of the jet to form a high-speed and low-pressure zone, hence the air entrainment in this region contributes to the collapse of jets. The collapse and convergence of jets´ morphology are the main reasons for the change of penetration and cone angle.
Technical Paper

Effect of Turbulence-Chemistry Interaction on Spray Combustion: A Large Eddy Simulation Study

2019-04-02
2019-01-0203
Although turbulence plays a critical role in engines operated within low temperature combustion (LTC) regime, its interaction with chemistry on auto-ignition at low-ambient-temperature and lean-oxygen conditions remains inadequately understood. Therefore, it is worthwhile taking turbulence-chemistry interaction (TCI) into consideration in LTC engine simulation by employing advanced combustion models. In the present study, large eddy simulation (LES) coupled with linear eddy model (LEM) is performed to simulate the ignition process in n-heptane spray under engine-relevant conditions, known as Spray H. With LES, more details about unsteady spray flame could be captured compared to Reynolds-averaged Navier-Stokes equations (RANS). With LEM approach, both scalar fluctuation and turbulent mixing on sub-grid level are captured, accounting for the TCI. A skeletal mechanism is adopted in this numerical simulation, including 41 species and 124 reactions.
Technical Paper

Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell

2018-09-10
2018-01-1718
Proton exchange membrane (PEM) fuel cell is widely recognized as an outstanding portable power plant and expected to be possibly commercialization in the near future. As is well known, mechanical stresses implemented on the bipolar plates during the assembly procedure should have prominent influences on mass and heat transfer behavior inside the cell, as well as the resultant performance. In this study, an analytical model is proposed to comprehensively investigate the influence of clamping force on the mass transport, electrochemical properties and overall cell output capability of a PEM fuel cell. The results indicate that proper clamping force not only benefits the gas leakage prevention but also increases the contact area between the neighboring components to decrease the contact ohmic resistance.
Technical Paper

Experimental Study on Impingement of Fuel Droplet on Substrates

2019-04-02
2019-01-0300
Within a gasoline direct injection (GDI) engine, the impingement of fuel droplet on substrates induces various problems such as particular matter emission, oil dilution and abnormal combustion. Therefore, in order to solve these problems, it is urgent to have a clear understanding of the impingement behavior of fuel droplet impacting on substrates. Most previous studies have focused on the impingement of either water droplet on dry solid surface or the impinging droplet on the liquid film of the same type of liquid, while little research has been conducted on the impingement of fuel droplet on relevant substrates existing in GDI engines. The impingement of fuel droplet with higher Weber number on dry surface, fuel film and oil film with different thickness and viscosity were investigated experimentally. Results show that fuel droplet impacting on dry wall is easy to be deposited to form a fuel film. The fuel film attached to the wall is the main reason for the splash.
Technical Paper

LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine

2019-01-15
2019-01-0006
Combustion cycle-to-cycle variation (CCV) of Spark-Ignition (SI) engines can be influenced by the cyclic variations in charge motion, trapped mass and mixture composition inside the cylinder. A high CCV leads to misfire or knock, limiting the engine’s operating regime. To understand the mechanism of the effect of flow field and mixture compositions on CCV, the present numerical work was performed in a single cylinder Direct Injection Spark-Ignition (DISI) engine. A large eddy simulation (LES) approach coupled with the G-equation combustion model was developed to capture the CCV by accurately resolving the turbulent flow field spatially and temporally. Further, the ignition process was modeled by sourcing energy during the breakdown and arc phases with a line-shape ignition model which could move with the local flow. Detailed chemistry was solved both inside and outside the flame front. A compact 48-species 152-reactions primary reference fuel (PRF) reduced mechanism was used.
Technical Paper

Numerical Investigation of the Intake Flow of a Four-Valve Diesel Engine

2017-10-08
2017-01-2211
The intake process plays an important role in the operation of internal combustion engines. In the present study, a three-dimensional transient simulation of a four-valve diesel engine was performed using Large Eddy Simulation (LES) model based on software CONVERGE. The mean velocity components in three directions through the intake valve curtain, the flow separation around the intake valves, the influences of inlet jet on turbulence flow field and cycle-to-cycle variation were investigated in this work. The result shows that the mean velocity distributes non-uniformly near the valve curtain at high valve lifts. In contrast, the mean velocity distribution is uniform at low valve lifts. It is found that the flow separation occurs at valve stem, valve seat and valve sealing through the outlet of the helical port. In contrast, flow separation is only observed in the valve seat through the outlet of the tangential port.
Technical Paper

Numerical Investigation on Effects of Oxygen-Enriched Air and Intake Air Humidification on Combustion and Emission Characteristics of Marine Diesel Engine

2018-09-10
2018-01-1788
In order to meet the increasingly stringent emissions restriction, it is indispensable to improve the combustion and emissions technology of high-speed marine diesel engines. Oxygen-enriched combustion and intake air humidification are effective ways to control pollution from diesel engines and improve combustion of diesel engines. In this study, the combustion and emission characteristics of supercharged intercooled marine diesel engine with humidity ratio and intake oxygen concentration were investigated by using multi-dimensional CFD model. The combustion model was established by AVL Fire code. The combination strategy of intake air humidification and oxygen-enriched combustion were optimized under partial load at 1350 rpm.
X