Refine Your Search

Topic

Search Results

Technical Paper

2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser-induced Fluorescence and Incandescence Techniques

2002-10-21
2002-01-2669
In order to investigate the soot formation process in a diesel spray flame, simultaneous imaging of soot precursor and soot particles in a transient spray flame achieved in a rapid compression machine was conducted by laser-induced fluorescence (LIF) and by laser-induced incandescence (LII) techniques. The 3rd harmonic (355nm) and the fundamental (1064nm) laser pulses from an Nd:YAG laser, between which a delay of 44ns was imposed by 13.3m of optical path difference, were used to excite LIF from soot precursor and LII from soot particles in the spray flame. The LIF and the LII were separately imaged by two image-intensified CCD cameras with identical detection wavelength of 400nm and bandwidth of 80nm. The LIF from soot precursor was mainly located in the central region of the spray flame between 40 and 55mm (270 to 370 times nozzle orifice diameter d0) from the nozzle orifice. The LII from soot particles was observed to surround the soot precursor LIF region and to extend downstream.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

1980-02-01
800254
The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.
Technical Paper

A New Technique for the Measurement of Sauter Mean Diameter of Droplets in Unsteady Dense Sprays

1989-02-01
890316
A new technique is developed for the in-situ measurement of Sauter mean diameter of droplets in non-evaporating transient dense sprays. This method analyzes the image of a shadowpicture of a spray based on the incident light extinction principle, and allows the sizing of Sauter mean diameter of whole droplets in a transient spray with any shape. In addition, this method allows the measurement of the local droplet size in a quasi-steady region of an axisymmetric spray if the conservation equations regarding mass and momentum are included in the calculation and data analysis. A calibration was carried out using glass beads as test particles: this was proved to have an accuracy of Sauter mean diameter measurement within 10%, on average. Applications of the new technique to both diesel and gasoline (EFI) sprays have been made.
Technical Paper

A Numerical Simulation of Turbulent Mixing in Transient Spray by LES (Comparison between Numerical and Experimental Results of Transient Particle Laden Jets)

2004-06-08
2004-01-2014
The purpose of this study is to investigate the turbulent mixing in a diesel spray by large eddy simulation (LES). As the first step for the numerical simulation of diesel spray by LES, the LES of transient circular gas jets and particle laden jets were conducted. The simulation of transient circular jets in cylindrical coordinates has numerical instability near the central axis. To reduce the instability of calculation, azimuthal velocity around the central axis is calculated by the linear interpolation and filter width around the axis is modified to the radial or axial grid scale level. A transient circular gas jet was calculated by the modified code and the computational results were compared with experimental results with a Reynolds number of about 13000. The computational results of mean velocity and turbulent intensity agreed with experimental results for z/D>10. Predicted tip penetration of the jet also agreed to experimental data.
Journal Article

A Role of NO2 on Soot Oxidation in DPFs and Effect of Soot Cake Thickness in Catalyzed DPFs Using Temperature-Programmed Oxidation and Electron Microscopic Visualization

2020-09-15
2020-01-2201
Development of the diesel particulate filter (DPF) aims to attain fast oxidation of accumulated soot at low temperature. Numerous researchers have explored the characteristics of soot oxidation under ambient conditions of simulated exhaust gas using thermogravimetric analysis or a flow reactor. In this study, temperature programmed oxidation (TPO) experiments were carried out for soot entrapped in miniaturized DPFs, cut-out from practical particulate filters, yielding wall-flow features typically encountered in real-world DPFs. Furthermore, when using the miniaturized samples, highly accurate lab-scale measurements and investigations can be facilitated. Examining different temperature ramping rates used for the TPO experiments, we propose a rate of 10°C/min as the most effective in analyzing soot oxidation in the practical filter substrates.
Technical Paper

A Study of the Structure of Diesel Sprays Using 2-D Imaging Techniques

1992-02-01
920107
The structure of dense sprays was investigated using 2-D imaging techniques. To investigate the mechanism of atomization, the liquid phase in a non-evaporating spray was visualized by a thin laser sheet formed by a single pulse from a Nd:YAG laser at the distance from 4 to 19 mm from the nozzle orifice with the injection pressure and the surrounding gas density as parameters. A new technique for the visualization of vapor phase in an evaporating spray, the SSI (Silicone particle Scattering Imaging) method, was proposed to investigate the structure of the vapor phase regions of the spray.
Technical Paper

A Study on Soot Formation and Oxidation in an Unsteady Spray Flame via Laser Induced Incandescence and Scattering Techniques

1995-10-01
952451
Two kinds of planar soot imaging techniques, laser induced incandescence (LII) and laser induced scattering (LIS) techniques were applied simultaneously to an unsteady free spray flame achieved in a rapid compression machine. An analysis of LII and LIS images yielded three kinds of qualitative images of soot concentration, size of soot particles, and number density of soot in the flame. These images revealed the fact that the soot is formed mainly in the center region of a flame resulting in an appearance of soot cloud with high number density and small particle size in this region, and then the soot size increases and the number density decreases while soot is conveyed downstream.
Technical Paper

A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging

1992-02-01
920114
The formation and oxidation processes of soot particles in unsteady spray flames were investigated in a quiescent atmosphere using 2-D laser sheet visualization. The mid-plane of a flame was illuminated twice during a short time-interval by a laser sheet from a double-pulsed YAG laser. An image pair of the scattered light from soot particles was taken by two intensified gated cameras in succession. The velocity vectors of soot clouds at various location in the sooting region were estimated using the spatial correlation between the image pair. The results of temporal and spatial variation of velocity and scattering intensity in the evolving soot clusters made it clear that soot is mainly formed in the periphery of the flame tip where the air entrainment is less and flame temperature favors soot formation.
Technical Paper

Application of Energy Optimal Control to Energy Management of Hybrid Vehicle

2011-05-17
2011-39-7244
Energy optimal control theory (EOC) is applied to the energy flow control of a hybrid electric vehicle. Since the differential equation is solved analytically, the control law can be easily implemented in real time. Because the objective function is described in power form that permits negative value, not only the energy consumption is minimized but also the energy regeneration by the motor is maximized. In the simulation for the 10-mode driving, it is shown that the fuel cost of EOC is 15% lower than the rule based control (RBC).
Technical Paper

Characteristics of Soot Oxidation at the Interface between Soot and Silicon-Oxy-Carbide with Embedded Single Nanosized Pt Particles

2013-04-08
2013-01-0516
A diesel particulate membrane filter (DPMF) offers good trapping efficiency of soot and reduces the pressure loss through the soot-trapping process. We found that one specific design of DPMF has the effect of reducing the apparent activation energy of the soot oxidation. The membrane is made of SiC nanoparticles with a diameter of 10-100 nm, which are covered with a thin silicon-oxy-carbide layer with a thickness of about 5 nm. The apparent activation energy of soot oxidation on the DPMF was reduced by 30-40 kJ/mol than conventional SiC-DPF. Furthermore, the light-off temperature of soot oxidation on the DPMF (with single nanosized Pt) is about 100°C lower than that of the DPMF (without Pt). The single nanosized Pt particles are embedded in the silicon-oxy-carbide layer. The formation of additional Pt is different from that which takes place in a conventional catalyzed soot filter (CSF). In a conventional CSF, the surface of the Pt particles is exposed to the atmosphere.
Technical Paper

Characterization of Biodiesel Particle Emission in Trapping and Regeneration Processes on Cordierite Diesel Particulate Filter

2015-11-17
2015-32-0821
As well-known, the diesel engine has the highest thermal efficiency at the same load as compared with internal combustion engine but its disadvantage is particulate matter (PM) emitted to the atmosphere. The studies of this paper were divided into two parts. The first part studied the quantity of PM from the both diesel and biodiesel fuels at 80% load (2400 rpm) by the trapping process on diesel particulate filter (DPF) used in a partial flow dilution tunnel. The second part studied the regeneration process of PM under the flow rate of oxygen and nitrogen gas of 13.5 L/min with 10%, 15%, and 21% of oxygen gas. The result showed that amount of PM from biodiesel fuel was lower around two times than PM from diesel fuel. The duration in regeneration process of biodiesel's PM was shorter than diesel while increasing of oxygen percentage can reduce regeneration time.
Technical Paper

Creation of Image on Diesel Spray and Flame by Means of Rapid Compression Machine and D.I Diesel Engine

1983-02-01
830447
The continous series of images on diesel spray and flame were created through the studies by means of using Rapid Compression Machine and D.I engine based on our latest data. 1. The image of diesel spray were elucidated through the study of thermodynamical global evaporation phenomena and the measurement of instantaneous distribution maps of spray fuel concentration by the high speed photo image analysis method at non-evaporated, evaporated states of free spray under the diesel condition at RCM. 2. The image of diesel flame were also obtained at the instantaneous distribution maps of temperature, soot and concentration of combustion products in the flame by means of photo image analysis method and gas sampling method at free and wall impinging spray flame with RCM and D.I engine.
Technical Paper

Effect of Biofuel and Soot on Metal Wear Characteristic Using Electron Microscopy and 3D Image Processing

2017-11-05
2017-32-0095
The soot contamination in used engine oils of diesel engine vehicles was about 1% by weight. The soot and metal wear particle sizes might be in the range of 0-1 µm and 1-25 µm, respectively. The characteristics of soot affecting on metal wear was investigated. Soot particle contamination in diesel engine oil was simulated using carbon black. Micro-nanostructure of soot particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and laser diffraction spectroscopy (LDS). The metal wear behavior was studied by means of a Four-Ball tribology test with wear measured. Wear roughness in micro-scale was investigated by high resolution optical microscopy (OM) , 3D rendering optical technique and SEM image processing method. It was found that the ball wear scar diameter increased proportionally to the soot primary particle size. The effect of biodiesel contamination were also increasing in wear scar diameter.
Technical Paper

Effect of High Pressure Injection on Soot Formation Processes in a Rapid Compression Machine to Simulate Diesel Flames

1987-09-01
871610
The characteristics of diesel spray and flame in a quiescent atmosphere were studied as a function of injection pressure ranging from 30 to 110 MPa. Measurements included the spray form and Sauter mean diameter of a non-evaporating spray, the liquid phase penetration of an evaporating spray and the visualization of sooting zone in a flame. Experimental results show that high pressure injection improves the atomization and air entrainment of non-evaporating spray and that the liquid phase penetration of evaporating spray is hardly affected by injection pressure, demonstrating a promotion of evaporation with injection pressure. Visualization of the sooting zone in a flame made it clear that high pressure injection is advantageous in reducing soot formation and shortening the combustion duration.
Technical Paper

Evaluation of a Design Support Tool Incorporating Sensory Performance Model of Ride Comfort for Conceptual Design of Controlled Suspensions

2024-04-09
2024-01-2292
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

High Combustion Temperature for the Reduction of Particulate in Diesel Engines

1988-02-01
880423
Experiments on the effects of temperature T and equivalence ratio ϕ on soot formation at high pressures up to 5 MPa were conducted. The soot formation region is mapped on ϕ-T diagram using the results obtained in the experiments and the published data. NO formation region is also determined by the Zeldovich equations and is plotted on the same diagram. The time histories of ϕ and T of the flame in a DI diesel engine which was obtained by a gas sampling study, are plotted on the ϕ-T diagram to form a trajectory. Discussion of the trajectory in relation to both soot and NO formation region gives suggestion of a possibility of high temperature - rich mixture combustion to reduce particulate formation in diesel engines.
Technical Paper

Impact of Biodiesel on Small CI Engine Combustion Behavior and Particle Emission Characteristic

2017-11-05
2017-32-0094
Diesel engines are high thermal efficiency because of high compression ratio but produce high concentration of particulate matter (PM) because of direct injection fuel diffusion combustion. PM must be removed from the exhaust gas to protect human health. This research describes biodiesel engine performance, efficiency and combustion behavior using combustion pressure analyzer. It was clearly observed that PM emitted from CI engines can be reduced by using renewable bio-oxygenated fuels. The morphology and nanostructure of fossil fuel and biofuel PMs were investigated by using a Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The morphology of biodiesel and diesel doesn’t have much different in the viewpoint of particulate matter trapping using DPF micro surface pores. The agglomerated ultrafine particles and primary nanoparticles sizes of diesel and biodiesel engine’s PM are approximately 50-500 nm and 20-50 nm, respectively.
Technical Paper

Impact of Engine Oil Additives on Nanostructure and Oxidation Kinetics of Diesel and Synthetic Biodiesel Particulate Matters using Electron Microscopy

2019-12-19
2019-01-2351
Physicochemical characteristics of particulate matters which are influenced by engine oil additives from engine combustion of diesel and synthetic biodiesel: hydrotreated vegetable oil (HVO) were successfully investigated using electron microscopy, electron dispersive x-ray spectroscopy and thermogravimetric analysis. The agglomerate structure of diesel PM, HVO PM and diesel blending lubricant PM are similar in micro-scales. However, nanostructure of soot is a spherical shape composed of curve line crystallites while the metal oxide ash nanostructure is composed of parallel straight line hatch patterns. The oxidation kinetics of fuel blending lubricant PMs are higher than neat fuel PMs due to catalytic effect of incombustible metal additives from engine lubricating oil.
X