Refine Your Search

Topic

Author

Search Results

Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Carbon Dioxide Measuring Technology in Engine Combustion Chambers

2004-03-08
2004-01-1340
The authors have developed an instrument that measures the CO2 concentration in engine combustion chambers using the infrared absorption method. The characteristics of this technology are as follows: 1 Measuring can be carried out while the engine is running at 600r/min to more than 3000r/min, full load operation. (Applicable to all EGR conditions) 2 Quick response; 2ms 3 High linearity; ±1% Full Scale and under (FS: 10%) 4 No aggravation is caused to the intake/exhaust performance of engines This technology contributes to the improvement of the in-cylinder EGR system using, for instance, a variable valve-timing mechanism that is now expanding in number of applications, and also the conventional EGR system.
Technical Paper

Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles

2015-04-14
2015-01-1254
In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
Technical Paper

Cylinder Wear Mechanism in an EGR-Equipped Diesel Engine and Wear Protection by the Engine Oil

1987-11-01
872158
Piston ring moving zone in the cylinder is one of the most critical lubrication regimes in diesel engines. This area is susceptible to combustion substances. In particular, abnormal wear is occasionally detected due to Exhaust Gas Recirculation (EGR) system equipment. In Japan, NOx emission requirements for passenger car diesels have become more stringent effective October 1, 1986. OEMs tend to apply EGR systems to reduce NOx in exhaust gas. In order to identify the phenomenon of abnormal cylinder wear of EGR equipped engine, engine bench tests were conducted under varied conditions in EGR equipment, cooling water temperature and fuel sulfur content. The test results suggest that wear caused at low temperature is mainly corrosive wear attributable to sulfuric acid formed by reaction with fuel sulfur and condensed water.
Technical Paper

Deactivation Mechanism of NOX Storage-Reduction Catalyst and Improvement of Its Performance

2000-03-06
2000-01-1196
A lean burn engine is effective in reducing fuel consumption. NOX storage-reduction catalysts (NSR catalyst) have been developed for these engines. In order to improve the performance of NSR catalysts, suppression of sulfur poisoning, which is one of the main causes of NSR catalyst deactivation, must be improved. In this paper, the sulfur desorption phenomenon has been analyzed from a novel point of view. Based on these results, an NSR catalyst with improved sulfur resistance has been developed by incorporation of highly dispersed titania, and use of a heat resistant zirconia with enhanced basicity.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Development of Di-Air - A New Diesel deNOx System by Adsorbed Intermediate Reductants

2011-08-30
2011-01-2089
An unprecedented phenomenon that achieves high NOx conversion was found over an NSR catalyst. This phenomenon occurs when continuous short cycle injections of hydrocarbons (HCs) are supplied at a predetermined concentration in lean conditions. Furthermore, this phenomenon has a wider range of applicability for different catalyst temperatures (up to 800 degrees Celsius) and SVs, and for extending thermal and sulfur durability than a conventional NOx storage and reduction system. This paper analyzes the reaction mechanism and concludes it to be highly active HC-deNOx by intermediates generated from adsorbed NOx over the base catalysts and HCs partially oxidized by oscillated HC injection. Subsequently, a high performance deNOx system named Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) was demonstrated that applies this concept to high speed driving cycles.
Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

Development of High Performance Three-Way-Catalyst

2006-04-03
2006-01-1061
In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

Development of NOx Storage-Reduction Three-way Catalyst for D-4 Engines

1999-03-01
1999-01-1279
It is an essential task for automobiles to reduce their fuel consumption. A direct injection gasoline engine (D-4 engine) is effective in reducing fuel consumption, but the reduction of NOx in the lean combustion region is impossible with a conventional three-way catalyst. The NOx storage-reduction three-way catalyst was put into practical use in 1994 for vehicles with lean-burn engines. This catalyst, however, is poisoned by SO2 caused by fuel sulfur, thus its activity is reduced. The conversion efficiency of this sulfur poisoned catalyst was not sufficient for reducing NOx in the exhaust gas of D-4 engine. We have, therefore, studied the mechanism of sulfur poisoning, and succeeded in improving the catalytic performance with the newly developed monolithic substrate and the newly developed additives.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines

1995-02-01
950809
A new 3-way catalyst with NOx conversion performance for lean-burn engines has been developed. The catalyst oxidizes NOx and stores the resulting nitrate, which is then reduced by HC and CO during engine operation around the stoichiometric air/fuel ratio. Both the composition of the storage component and the particle sizes of the noble metal were optimized. In addition, a special air fuel mixture control has been developed to make the best of the NOx storage-reduction function. The present catalyst showed 90% conversion efficiency and improved fuel economy by 4% in the Japanese 10-15 mode test cycle. The efficiency remained at 60% or more after durability test.
X