Refine Your Search

Topic

Author

Search Results

Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

A Study of the Potential Impact of Some Unregulated Motor Vehicle Emissions

1983-06-06
830987
Studies of emissions from vehicles equipped with catalysts have shown that some unregulated emissions can increase when a catalyst is used. One example of this is sulfuric acid, which has been studied extensively. Other unregulated emissions include ammonia and hydrogen cyanide. In a number of studies, these unregulated pollutant emissions have been measured from light-duty vehicles and heavy-duty engines. These emission levels were used in air quality dispersion models to predict the resultant air quality levels. The ambient concentrations predicted for each pollutant were then compared to suggested concentrations at which adverse health effects may be found to determine if additional monitoring or control would be indicated for these pollutants. It was determined that mobile source emissions of sulfuric acid, hydrogen cyanide, and ammonia do not in general result in ambient levels of concern for the air quality situations studied.
Technical Paper

Alternative Vehicle Power Sources: Towards a Life Cycle Inventory

2000-04-26
2000-01-1478
Three alternatives to internal combustion vehicles currently being researched, developed, and commercialized are electric, hybrid electric, and fuel-cell vehicles. A total life-cycle inventory for an alternative vehicle must include factors such as the impacts of car body materials, tires, and paints. However, these issues are shared with gasoline-powered vehicles; the most significant difference between these vehicles is the power source. This paper focuses on the most distinct and challenging aspect of alternative-fuel vehicles, the power sources. The life-cycle impacts of battery systems for electric and hybrid vehicles are assessed. Less data is publicly available on the fuel cell; however, we offer a preliminary discussion of the environmental issues unique to fuel cells. For each of these alternative vehicles, a primary environmental hurdle is the consumption of materials specific to the power sources.
Technical Paper

Automotive Hydrocarbon Emission Patterns in the Measurement of Nonmethane Hydrocarbon Emission Rates

1977-02-01
770144
The advent of emission control technology has resulted in significant changes in both the total mass and detailed patterns of hydrocarbons emitted from automobiles. Emission rates of 56 hydrocarbons from 22 motor vehicles, including catalyst and noncatalyst configurations, were determined for the Federal Urban Driving Cycle. An increased relative abundance of methane is indicated for vehicles equipped with oxidation catalysts. In view of the photochemically non-reactive nature of methane, simple and economic procedures for determination of vehicle nonmethane hydrocarbon emission rates are evaluated. In general the procedures evaluated require independent total hydrocarbon and methane analysis, with the nonmethane hydrocarbon level calculated by difference. The procedures are evaluated by comparison of indicated nonmethane hydrocarbon emission rates with rates obtained by summation of individual compound rates determined by advanced gas chromatographic procedures.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Technical Paper

Can Auto Technicians be Trained to Repair IM240 Emission Failures?

1996-02-01
960091
Eleven experienced commercial automotive technicians were recruited and trained to repair IM240 emission failures using a specially developed 30 hour course. The training course emphasized the use of an oscilloscope and a flow chart and wave form strategy to repair vehicles. Each technicians' performance was evaluated based on the repair of three or four in-use Arizona IM240 failures. Pre-training and post-training written tests were also administered. Results from this limited study were encouraging. After the technician training, HC and CO emission levels were reduced by 69% and NOx by 58%. More importantly, most of the technicians learned some new and useful diagnostic and equipment skills which they can immediately apply to their businesses. They also became more motivated to tackle the challenge of repairing vehicles to low transient emissions, and aware of the existence and use of new sophisticated diagnostic tools such as oscilloscopes.
Technical Paper

Catalysts for Methanol Vehicles

1987-11-01
872052
A Methanol catalyst test program has been conducted in two phases. The purpose of Phase I was to determine whether a base metal or lightly-loaded noble metal catalyst could reduce Methanol engine exhaust emissions with an efficiency comparable to conventional gasoline engine catalytic converters. The goal of Phase II was the reduction of aldehyde and unburned fuel emissions to very low levels by the use of noble metal catalysts with catalyst loadings higher than those in Phase I. Catalysts tested in Phase I were evaluated as three-way converters as well as under simulated oxidation catalyst conditions. Phase II catalysts were tested as three-way converters only. For Phase I, the most consistently efficient catalysts over the range of pollutants measured were platinum/rhodium configurations. None of the catalysts tested in Phase I were able to meet a NOx level of 1 gram per mile when operated in the oxidation mode.
Technical Paper

Compound Injection to Assure the Performance of Motor Vehicle Emissions Sampling Systems

1996-05-01
961118
There are many sources of variability when sampling motor vehicle emissions, including intermittant losses to “wetted” sampling system surfaces if water condensation occurs and thermal decomposition if sampling system surfaces get excessively hot. The risk of losses varies during typical transient speed emissions tests and depends upon many variables such as temperature, pressure, exhaust dilution ratio, dilution air humidity, fuel composition, and emissions composition. Procedures are described for injection of known concentrations of compounds of interest into transient motor vehicle exhaust for the purpose of characterizing losses between the vehicle tailpipe and emissions analyzer.
Technical Paper

Detection of Catalyst Failure On-Vehicle Using the Dual Oxygen Sensor Method

1991-02-01
910561
On-vehicle proof-of-concept testing was conducted to evaluate the ability of the dual oxygen sensor catalyst evaluation method to identify serious losses in catalyst efficiency under actual vehicle operating conditions. The dual oxygen sensor method, which utilizes a comparison between an upstream oxygen sensor and an oxygen sensor placed downstream of the catalyst, was initially studied by the Environmental Protection Agency (EPA) under steady-state operating conditions on an engine dynamometer and reported in Clemmens, et al. (1).* At the time that study was released, questions were raised as to whether the technological concepts developed on a test fixture could be transferred to a vehicle operating under normal transient conditions.
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program Part 3 – Results and Validation

2009-04-20
2009-01-0938
Beginning in 2007, heavy-duty engine manufacturers in the U.S. have been responsible for verifying the compliance on in-use vehicles with Not-to-Exceed (NTE) standards under the Heavy-Duty In-Use Testing Program (HDIUT). This in-use testing is conducted using Portable Emission Measurement Systems (PEMS) which are installed on the vehicles to measure emissions during real-world operation. A key component of the HDIUT program is the generation of measurement allowances which account for the relative accuracy of PEMS as compared to more conventional, laboratory based measurement techniques. A program to determine these measurement allowances for gaseous emissions was jointly funded by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and various member companies of the Engine Manufacturer's Association (EMA).
Technical Paper

Effect of Engine Condition on FTP Emissions and In-Use Repairability

1992-02-01
920822
Twenty in-use vehicles that had failed the I/M test in the State of Michigan were inspected for engine mechanical condition as well as the state of the emission control system. Mass emission tests were conducted before and after repairs to the emission control system. The internal engine condition (i.e., high or low levels of cylinder leakage, or compression difference) showed little effect on the ability of the repaired vehicles to achieve moderate mass emission levels. Nine of the twenty vehicles were recruited after three years, and with the exception of tampering, the original emission control system repairs proved to be durable.
Technical Paper

Emissions from Catalyst Cars Beyond 50 000 Miles and the Implications for the Federal Motor Vehicle Control Program

1978-02-01
780027
High mileage vehicles (in excess of 50,000 miles) contribute more than half of all vehicular emissions. With the new catalytic converter equipped cars, the proportional contribution of these vehicles may be even higher than for pre-catalyst vehicles. Thus a substantial portion of motor vehicle related air pollution may be caused by vehicles not subject to the manufacturer directed provisions of the Clean Air Act. This paper presents a modeling effort based on hypotheses and some preliminary data, and suggests some alternatives to combat this potential problem.
Technical Paper

Evaluation of Emission Control Technology Approaches for Heavy-Duty Gasoline Engines

1978-02-01
780646
This paper summarizes a laboratory effort toward reducing nine-mode cycle composite emissions and fuel consumption in a heavy-duty gasoline engine, while retaining current durability performance. Evaluations involved standard carburetors, a Dresserator inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reactors, and exhaust gas recirculation, along with other components and engine operating parameters. A system consisting of electronic fuel injection, thermal reactors with air injection and exhaust gas recirculation, was assembled which met specified project goals. An oxidation catalyst was included as an add-on during the service accumulation demonstration. In addition, the driveability of this engine configuration was demonstrated.
Technical Paper

Exhaust Emissions from In-Use Passenger Cars Equipped with Three-Way Catalysts

1980-06-01
800823
This paper presents the results of an exhaust emission testing program conducted by the U.S. Environmental Protection Agency. The test vehicles were 1978–1980 passenger cars of various makes and models. Each of the 686 vehicles tested was equipped with a three-way catalyst system and was certified to California standards. The purpose of the program was to gather information on current systems in customer use for projections on the ability of the three-way system to meet emission standards of the future. The results indicate that these systems are capable of achieving low emission levels although high levels are also possible due to defects, deterioration, or tampering.
Technical Paper

Light Duty Automotive Fuel Economy … Trends through 1982

1982-02-01
820300
EPA Fuel economy figures are presented for model year 1982 cars and light duty trucks. Comparisons with the MPG figures of prior years are included. Sales penetrations of various vehicle, engine, and emission control design features are given, and domestic cars' MPG characteristics are compared to that of imports', gasoline vehicle MPG is compared to Diesel MPG, and 49-states MPG is compared to California MPG. Usage of newer vehicle technologies is continuing to increase, leading to continued growth in fuel economy capability in spite of stringent emission standards.
Technical Paper

Light Duty Automotive Fuel Economy … Trends thru 1985

1985-05-01
850550
This, the thirteenth in a series of papers on trends in EPA fuel economy, covers both passenger cars and light trucks and concentrates on the current model year, 1985. It differs from previous papers in two ways: 1) Model years 1975, 1980 and 1985 are highlighted, with the model years in between these rarely discussed; 2) The progress of the industry, as a whole, in improving fuel economy since 1975 is emphasized, and individual manufacturer data are de-emphasized. Conclusions are presented on the trends in fuel economy of the car and light truck fleets; the Domestic, European and Japanese market sectors; and various vehicle classes.
Technical Paper

Light Duty Automotive Fuel Economy …Trends through 1981

1981-02-01
810386
EPA new-model fuel economy figures are presented for passenger vehicles and light duty trucks (those with GVW ratings up to 8500 lbs). The 1981 models are emphasized, with some comparisons to prior years included. Reader familiarity with the EPA tests, data bases, and analytical methods is assumed. Principal two-way analyses include comparisons of domestic vs. import, gasoline vs. Diesel, and Federal (49-state) vs. California vehicles. Sales fractions for a number of vehicle and engine emission control design features are included. The principal finding is that increased use of newer vehicle and emission control technologies in 1981 has accompanied significant fuel economy gains in spite of the tougher 1981 emission standards.
Technical Paper

Light Duty Automotive Fuel Economy… Trends thru 1983

1983-02-01
830544
This, the eleventh in a series of Papers on EPA fuel economy trends, emphasizes the current Model Year (1983) as usual, but also gives increased emphasis to trends in vehicle technology, including catalyst and transmission subclasses. Final “CAFE”* production volumes and MPG figures have been used to update the data bases through the 1980 Model Year, and an analytic method used in the past to allocate year-to-year fleet MPG changes to specific causes, such as weight mix shifts, has been reinstituted. Conclusions are presented on the relation between fuel economy and emission standards, catalyst types, and transmission types.
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Technical Paper

Modeling and Controls Development of 48 V Mild Hybrid Electric Vehicles

2018-04-03
2018-01-0413
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The ALPHA desktop application was developed using MATLAB/Simulink. The ALPHA tool was used to evaluate technology effectiveness and off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies of conventional, non-hybrid vehicles for the Midterm Evaluation of the 2017-2025 LD GHG rule by the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality (OTAQ).
X