Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Turbulence and Initial Temperature Inhomogeneity on Homogeneous Charge Compression Ignition Combustion

2006-10-16
2006-01-3318
A 0.5 liter optical HCCI engine firing a mixture of n-heptane (50%) and iso-octane (50%) with air/fuel ratio of 3 is studied using large eddy simulation (LES) and laser diagnostics. Formaldehyde and OH LIF and in-cylinder pressure were measured in the experiments to characterize the ignition process. The LES made use of a detailed chemical kinetic mechanism that consists of 233 species and 2019 reactions. The auto-ignition simulation is coupled with LES by the use of a renormalized reaction progress variable. Systematic LES study on the effect of initial temperature inhomogeneity and turbulence intensity has been carried out to delineate their effect on the ignition process. It was shown that the charge under the present experimental condition would not be ignited without initial temperature inhomogeneity. Increasing temperature inhomogeneity leads to earlier ignition whereas increasing turbulence intensity would retard the ignition.
Technical Paper

Stochastic Model for the Investigation of the Influence of Turbulent Mixing on Engine Knock

2004-10-25
2004-01-2999
A stochastic model based on a probability density function (PDF) was developed for the investigation of different conditions that determine knock in spark ignition (SI) engine, with focus on the turbulent mixing. The model used is based on a two-zone approach, where the burned and unburned gases are described as stochastic reactors. By using a stochastic ensemble to represent the PDF of the scalar variables associated with the burned and the unburned gases it is possible to investigate phenomena that are neglected by the regular existing models (as gas non-uniformity, turbulence mixing, or the variable gas-wall interaction). Two mixing models are implemented for describing the turbulent mixing: the deterministic interaction by exchange with the mean (IEM) model and the stochastic coalescence/ dispersal (C/D) model. Also, a stochastic jump process is employed for modeling the irregularities in the heat transfer.
X