Refine Your Search

Topic

Search Results

Journal Article

A Comparative Analysis of Metaheuristic Approaches (Genetic Algorithm/Hybridization of Genetic Algorithms and Simulated Annealing) for Planning and Scheduling Problem with Energy Aspect

2021-05-20
Abstract This article discusses a multi-item planning and scheduling problem in a job-shop system with consideration of energy consumption. Planning is considered by a set of periods, each one is characterized by a demand, energy, and length. Scheduling is determined by the sequences of jobs on available resources. A Mixed-Integer Linear Programming (MILP) problem is formulated to integrate planning and scheduling, it is considered as an NP-difficult problem. A Genetic Algorithm (GA) is then developed to solve the MILP, and then a hybridized approach of simulated annealing with genetic algorithm (HGASA) is presented to optimize the results. Finally, numerical results are presented and analyzed to evaluate the effectiveness of the proposed algorithms.
Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

A Novel Approach for Integrating the Optimization of the Lifetime and Cost of Manufacturing of a New Product during the Design Phase

2021-05-13
Abstract Maximum lifetime and minimum manufacturing cost for new products are the primary goals of companies for competitiveness. These two objectives are contradictory and the geometric dimensions of the products directly control them. In addition, the earlier design errors of new products are predicted, the easier and more inexpensive their rectification becomes. To achieve these objectives, we propose in this article a novel model that makes it possible to solve the problem of optimizing the lifespan and the manufacturing cost of new products during the phase of their design. The prediction of the life of the products is carried out by an energy damage method implemented on the finite element (FE) calculation by using the ABAQUS software. The manufacturing cost prediction is carried out by applying the ABC cost estimation analytical method. In addition, the optimization problem is solved by the method of genetic algorithms.
Journal Article

A Novel Durability Analysis Approach for High-Pressure Die Cast Aluminum Engine Block

2021-03-03
Abstract Lightweight and high-strength high-pressure die casting (HPDC) aluminum has been widely used in automotive components such as the cylinder block, lower crankcase extension, transmission case, and drive unit. Die cast parts have good surface finishes with relatively higher material strength in the casting skin than the center core material, maintain consistent features and tolerance, and maximize metal yield, therefore making it the most cost-effective casting process for mass production of aluminum parts. However, due to the rapid filling rates, the HPDC process tends to form large porosity and oxides because of the entrapped gas and solidification shrinkage, thereby deteriorating the mechanical properties of the casting parts.
Journal Article

A Review on Electromagnetic Sheet Metal Forming of Continuum Sheet Metals

2019-05-29
Abstract Electromagnetic forming (EMF) is a high-speed impulse forming process developed during the 1950s and 1960s to acquire shapes from sheet metal that could not be obtained using conventional forming techniques. In order to attain required deformation, EMF process applies high Lorentz force for a very short duration of time. Due to the ability to form aluminum and other low-formability materials, the use of EMF of sheet metal for automobile parts has been rising in recent years. This review gives an inclusive survey of historical progress in EMF of continuum sheet metals. Also, the EMF is reviewed based on analytical approach, finite element method (FEM) simulation-based approach and experimental approach, on formability of the metals.
Journal Article

Adaptive Slicing of Point Cloud Directly with Discrete Interpolable-Area Error Profile in Additive Manufacturing

2023-02-01
Abstract Point cloud objects have gained popularity in three-dimensional (3D) printing recently due to advancements in reverse engineering technology. Fabricating an object with a fused deposition modeling (FDM) printer requires converting the object to layered contours, which involves a slicing process. The slicing process of a point cloud object usually requires reconstructing a 3D object from a point cloud, which requires users’ deep understanding of 3D modeling software and a laborious work process. To avoid these problems, the direct slicing of point cloud objects is gaining more popularity. This research work proposes an adaptive slicing approach from point cloud objects directly without surface reconstruction. The adaptive slicing maintains the global geometry error while requiring a smaller number of fabrication layers and printing time. A new error profile used in the adaptive slicing approach is introduced.
Journal Article

Analytical Structural Stress and Stress Intensity Factor Solutions for Similar and Dissimilar Spot Welds in Cross-Tension Specimens

2020-08-11
Abstract New analytical structural stress solutions for a rigid inclusion in a finite square thin plate with clamping edges under opening loading conditions are developed. The new solutions are used to derive new analytical structural stress and stress intensity factor solutions for similar and dissimilar spot welds in cross-tension specimens. Three-dimensional finite element analyses are conducted to obtain the stress intensity factor solutions for similar spot welds and dissimilar magnesium/steel spot welds in cross-tension specimens of equal thickness with different ratios of half-specimen width-to-weld radius. A comparison of the analytical and computational solutions indicates that the analytical stress intensity factor solutions for similar spot welds in cross-tension specimens of equal thickness are accurate for large ratios of half-specimen width-to-weld radius.
Journal Article

Assessing Viscosity in Hydro-Erosive Grinding Process via Refractometry

2019-08-22
Abstract The manufacturing of diesel injector nozzles requires precision processing to produce multiple micro-holes. An abrasive fluid containing a mixture of mineral oil and hard particles is used for rounding them, ensuring the hydrodynamics of the injection. As verified in a previous investigation, the viscosity of the fluid undergoes uncontrolled changes during hydro-erosive (HE) grinding. Such undesired viscosity changes are detrimental to the process and difficult to assess. The current investigation aims to study the possibility of using the refractive index of the oils used in the HE grinding for assessing their viscosities. A calibration curve correlating the refractive index and viscosity was obtained from the analysis of samples produced by mixing two distinct mineral oils in different proportions. The determined calibration curve was tested with 45 samples of filtered oil, collected directly from the tanks during the HE grinding.
Journal Article

Assessing the Characterization for Multiple Cones and Cone Portions Utilizing X-Ray Diffraction in Single Point Incremental Forming

2023-12-06
Abstract Single point incremental forming (SPIF) is a robust and new technique. In the recent research scenario, materials properties such as microstructure, micro-texture analysis, and crystal structure can be accessed through characterization non-destructive techniques, e.g., scanning electron microscope (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). XRD is a non-destructive method for analyzing the fine structure of materials. This study explores how process variables such as wall angle, step size, feed rate, and forming speed affect the parts of large-, medium-, and small-sized truncated cones of aluminum alloy AA3003-O sheet. Several cone parts of truncated cones are used in this investigation to implement Scherrer’s method. The two primary determining factors peak height and crystallite size are assessed for additional analysis in the present research.
Journal Article

Characterization of Friction Stir Processed Aluminum-Graphene Nanoplatelets Composites

2020-01-23
Abstract The present study deals with the investigation on microstructural and mechanical properties of friction stir processed (FSPed) pure Aluminum (Al)-Graphene Nanoplatelets (GNPs) composites. Composite specimens such as castings were made by blending 0.5 wt.%, 1.0 wt.%, 1.5 wt.%, and 2.0 wt.% of GNPs in pure Al matrix using the ultrasonic-assisted stir casting technique (UASCT). Also for enhancement of mechanical properties via grain refinement the friction stir processing (FSP) has been employed, as well as mechanical properties like tensile strength and microhardness were evaluated. Moreover, the microstructural analysis were done using Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), transmission electron microscopy (TEM), and X-Ray Diffraction (XRD) examination were also performed for inspecting the changes occurred during synthesis of the fabricated composites after FSP.
Journal Article

Comparative Multi-Axial High-Cycle Fatigue Analysis of Spot Weld Models Using Findley’s Damage Criteria

2022-10-14
Abstract High-cycle fatigue (HCF) is one of the main concerns for spot-welded structures, and finite element (FE)-based simulations have critical importance for the life assessment and design optimization. The accuracy of spot weld modeling methodologies has a key role in achieving the development objectives. This article presents a comparative study for HCF simulations of different spot weld modeling methodologies and their comparison with the test data. In this regard, HCF analyses based on Findley’s multi-axial damage model are conducted with a commercial software. Direct equivalenced spot weld modeling with and without offset adjustment, rigid spot weld, and rigid beam (single) spot weld methods are analyzed for overlapped sheet metals under axial cyclic loading. Two specimens with different thicknesses, spot weld diameters, and number of nuggets are simulated under six cyclic load cases: 2000-4000 N, 1400-2800 N, 1800-3600 N, 200-8000 N, 100-8300 N, and 200-6800 N.
Journal Article

Comparison of Formability between Steel and Aluminum Fender Panels

2021-06-02
Abstract Reducing a vehicle’s weight is an efficient method to reduce energy consumption. Aluminum alloy is the best material for lightweight automobiles. However, the poor formability of aluminum means that it is difficult to develop stamping dies. This study designs a suitable forming tool for aluminum fenders. A simulation and an experiment are used to analyze the formability of aluminum fenders. A theoretical calculation, experimental testing, and sampling comparison are used to verify the design. The material properties of steel and aluminum are firstly studied and compared. The results show that a traditional S-type blank die face design is not suitable for aluminum because of its low tensile strength and the potential for elongation. A relatively flat trapezoid blank die face design is proposed to smooth the variation. However, a flat die face for a trapezoidal blank limits stretching, so another design is essential to improve the formability.
Journal Article

Comparison of Genetic Algorithm and Taguchi Optimization Techniques for Surface Roughness of Natural Fiber-Reinforced Polymer Composites

2020-08-11
Abstract Climate change has necessitated the development of “green” alternatives to replace existing materials. This focus has resulted in the push toward fabricating natural fiber-reinforced polymer composites. This research work looks at the surface roughness (SR) of natural fibers like rice husk ash (RHA) and groundnut shell ash (GSA) reinforced in nine different concentrations into an epoxy matrix to form composites. Composite samples are fabricated using various concentrations of natural fibers and measures and optimizes for the SR through the implementation of genetic algorithms (GA). It was found that a minimum SR of 1.422 μm can be obtained for an epoxy/hardener ratio of 3:1 and without the addition of any reinforcements. This optimization was achieved within 102 generations. In addition to GA optimization, another optimization implementation was done through the Taguchi method.
Journal Article

Damping of Powder Metal Rings

2020-05-21
Abstract Powder metallurgy is a widely used manufacturing methodology in the gearbox industry. Noise and vibration is a common cause for concern in the gearbox industry due to the continuous contact between gear teeth at high rotational frequencies. Despite this, limited research has been performed investigating the modal properties of powder metal products. This work investigates the damping ratios of a copper-infiltrated steel powder metal ring and a hot-rolled steel ring both experimentally and computationally. Negligible difference was observed between the damping ratios of the powder metal and hot-rolled steel rings. Two proportional damping models were investigated to predict the damping ratios of the powder metal ring. It was found that the Caughey damping model was the most accurate, generating damping ratios within 2.36% for a frequency bandwidth of up to 4000 Hz.
Journal Article

Development of a Thin-Wall Magnesium Automotive Door Inner Panel

2020-08-11
Abstract Cast magnesium (Mg) door inner panels can provide a good combination of weight, functional, manufacturing, and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility, and relatively low strength versus steel. A project was supported by the US Department of Energy to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, Mg inner panel. This development project is the first of its kind within North America. The 2.0 mm Mg design, through casting process enablers, has met or exceeded all stiffness and side-impact requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies. The performance of the Mg design has been demonstrated through component and vehicle tests.
Journal Article

Eco-Profiling of Bio-Epoxies via Life Cycle Assessment

2020-03-25
Abstract Epoxies, synthesized from bisphenol-A (BPA) and epichlorohydrin (ECH), are predominantly used as coatings, adhesives, and matrix material in fiber-reinforced composites for body-in-white (BiW) applications in the automotive sector. However, given the production of conventional epoxies from nonrenewable petroleum resource and toxicity of BPA, several initiatives have been undertaken by researchers to synthesize alternative epoxies from various bio-sources that are free of BPA and exhibit similar mechanical performance. As a result, such bio-sourced epoxies are almost immediately termed as “ecofriendly,” despite the lack of comprehensive evaluation of their ecological performance that takes into account enhanced natural resource usage and associated impacts accompanying such epoxies.
Journal Article

Effect of Ball Milling on the Tensile Properties of Aluminum-Based Metal Matrix Nanocomposite Developed by Stir Casting Technique

2021-06-16
Abstract Combining ball milling with stir casting in the synthesis of nanocomposites is found effective in increasing the strength and ductility of the nanocomposites. In the first step, the nanoparticles used as reinforcement are generated by milling a mixture of aluminum (Al) and manganese dioxide (MnO2) powders. A mixture of Al and MnO2 powders are mixed in the ratio of 1:2.4 by weight and milled at 300 rpm in a high-energy planetary ball mill for different durations of 120 min, 240 min, and 360 min to generate nano-sized alumina (Al2O3) particles. It is supposed that the powders have two different roles during milling, firstly, to generate nano-sized Al2O3 by oxidation at the high-energy impact points due to collision between Al and MnO2 particles, and secondly, to keep nano-sized Al2O3 particles physically separate by the presence of coarser particles.
Journal Article

Effect of Freeform Honing on the Geometrical Performance of the Cylinder Liner—Numerical Study

2022-09-01
Abstract Reducing the friction of the internal combustion engine (ICE) is of major interest to reduce fuel consumption and greenhouse gas (GHG) emissions. A huge potential for friction reduction is seen in the piston ring-cylinder liner (PRCL) coupling. Approaching the cylindrical liner shape in the hot operation state will enhance the PRCL conformation. Recently, newly developed freeform honing techniques can help to achieve this perfect cylinder shape. This article presents a numerical study of the effect of freeform honing on the geometrical performance of the liner in the hot operation state. The freeform honed liner (TR) concept is based on the approach of reversing the local deformation of a conventional circular liner. A validated computational model for a gasoline engine is used to compare the geometrical performance of those TR cases with circular, elliptical (EL), and conical elliptical liners (NEL) at different operational points.
Journal Article

Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium-Carbon Steel Drawn Wire

2023-09-29
Abstract In this article, the effect of heat treatment on the microstructure and mechanical behavior of medium-carbon steel wire intended for the spring mattress is investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction, Vickers hardness (Hv), and tensile strength. The results indicate that the microstructure elongation along the wire axis is observed with the bending and kinking lamellae at the deformation level of 57.81%, this change appears as a fracture in the microstructure and leads to an increase in hardness, tensile strength, and intensities of diffraction patterns. After heat treatment, we observed a redistribution in the grain, which is almost the same in the wire rod and drawn wires; indeed, this led to a decrease in hardness, tensile strength, and augmentation in intensities of peaks. The EBSD pole figures reveal the development of texture in the cementite slip plane (001).
Journal Article

Effect of Laser Beam Machining Process on Stainless Steel Performance Characteristic

2022-03-02
Abstract The impact of Laser Beam Machining (LBM) process parameters on Surface Roughness (SR) and kerf width during machining is investigated in this work. Stainless Steel is a material that is resistant to corrosion. LBM is a nontraditional machining method in which material is removed by melting and vaporizing metal when a laser beam collides with the metal surface. There are numerous process variables that influence the quality of the LBM-cut machined surface. However, the most essential factors are laser power, cutting speed, assist gas pressure, nozzle distance, focus length, pulse frequency, and pulse width. SR, Material Removal Rate (MRR), and kerf width and heat affected zone are significant performance indicators in LBM. The influence of LBM process parameters on SR and kerf width while machining stainless steel material is investigated in this study.
X