Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

(Particle) Emissions of Small 2-& 4-Stroke Scooters with (Hydrous) Ethanol Blends

2010-04-12
2010-01-0794
The objectives of the present work are to investigate the regulated and unregulated (particle) emissions of a classical and modern 2-stroke and a typical 4-stroke scooter with different ethanol blend fuels. There is also comparison of two different ethanol fuels: pure ethanol (E) *) and hydrous ethanol (EH) which contains 3.9% water and is denatured with 1.5% gasoline. Special attention is paid in this research to the hydrous ethanol, since the production costs of hydrous ethanol are much less than those for (dry) ethanol. The vehicles are with carburettor and without catalyst, which represents the most frequent technology in Eastern Asia and offers the information of engine-out emissions. Exhaust emissions measurements have been performed with fuels containing ethanol (E), or hydrous ethanol (EH) in the portion of 5, 10, 15 and 20% by volume. During the test systematical analysis of particle mass (PM) and nano-particles counts (NP) were carried out.
Technical Paper

1-D Modeling and Experimental Evaluation of Secondary Air Injection System for a Small SI Engine

2013-10-15
2013-32-9091
In order to comply with the existing emission norms of BSIII in India or EURO III and beyond that also, it is not sufficient to use the catalytic converter technology alone over the wide range of engine operating maps. Different studies across the world have proved that the cost, drivability, operating range against AFR, heat dissipation rate characteristics of catalytic converter limit their use in startup and idling conditions. One common way to tackle this condition is to use the Secondary Air Injection (SAI) system. In this system, small amount of air is injected after the exhaust port to initiate the thermal oxidation of gases. The right amount of air injected at the right time and at right location will reduce the emission by 37-90%. In the following study, SI engine vehicle with single cylinder, 160 cc and having carburetor is used as a test vehicle to evaluate the performance of SAI. The SAI system is modeled in AVL BOOST software and validated against the experimental data.
Technical Paper

1980 CRC Fuel Rating Program - The Effects of Heavy Aromatics and Ethanol on Gasoline Road Octane Ratings

1982-02-01
821211
A gasoline Road Octane study was conducted by the Coordinating Research Council (CRC) to evaluate the effects of heavy aromatics (C9 and heavier) and ethanol content on Road Octane performance independent of Research Octane Number (RON) and Motor Octane Number (MON). Maximum-throttle and part-throttle Road ON’s were found to be well predicted by equations containing only RON and MON terms. Heavier aromatics were found to have a small adverse effect on both maximum-throttle and part-throttle Road ON independent of its direct effects on RON and MON. The all-car data did not show a significant ethanol-content effect, but eight of the thirty-seven cars did show significant effects for ethanol content.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Journal Article

3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOx Emissions

2010-04-12
2010-01-0590
Today turbo-diesel powertrains offering low fuel consumption and good low-end torque comprise a significant fraction of the light-duty vehicle market in Europe. Global CO₂ regulation and customer fuel prices are expected to continue providing pressure for powertrain fuel efficiency. However, regulated emissions for NO and particulate matter have the potential to further expand the incremental cost of diesel powertrain applications. Vehicle segments with the most cost sensitivity like compacts under 1400 kg weight look for alternatives to meet the CO₂ challenge but maintain an attractive customer offering. In this paper the concepts of downsizing and downspeeding gasoline engines are explored while meeting performance needs through increased BMEP to maintain good driveability and vehicle launch dynamics. A critical enabler for the solution is adoption of gasoline direct injection (GDi) fuel systems.
Technical Paper

3D Numerical Characterization of a Multi-Holes Injector in a Quiescent Vessel and Its Application in a Single-Cylinder Research Engine Using Ethanol

2017-11-07
2017-36-0360
The fuel injection in internal combustion engines plays a crucial role in the mixture formation, combustion process and pollutants' emission. Its correct modeling is fundamental to the prediction of an engine performance through a computational fluid dynamics simulation. In the first part of this work a tridimensional numerical simulation of a multi-hole’s injector, using ethanol as fuel, is presented. The numerical simulation results were compared to experimental data from a fuel spray injection bench test in a quiescent vessel. The break up model applied to the simulation was the combined Kelvin-Helmholtz Rayleigh-Taylor, and a sensitivity analysis of the liquid fuel penetration curve, as well on the overall spray shape was performed according to the model constants. Experimental spray images were used to aid the model tuning. The final configuration of the KH-RT model constants that showed best agreement with the measured spray was C3 equal to 0.5, B1, 7 and Cb, 0.
Technical Paper

430LNb - A New Ferritic Wire for Automotive Exhaust Applications

2000-03-06
2000-01-0314
The increasing use of ferritic stainless steels (AISI 409, 439, 436 and 441) in automotive exhaust systems, especially for manifolds and catalytic converter canning, has led the authors to develop a new ferritic welding wire, designated 430LNb. This new material is recommended for the GMAW and GTAW processes and provides better metallurgical compatibility with the ferritic base metals, in terms of both thermal expansion and microstructure. The composition of the new welding wire has been adjusted in order to guarantee an entirely ferritic structure in the welds of ferritic sheet materials, together with good resistance of the welds to both wet corrosion and high temperature oxidation, corresponding to the conditions encountered respectively in the colder and hotter parts of the exhaust line. This is achieved by limitation of the C (<0.02%) and N (<0.02%) contents, stabilisation with Nb, such that Nb > 0.05 + 7 (C + N) and Nb < 0.5%, and a Cr content of 17.8-18.8%.
Technical Paper

A 322,000 kilometer (200,000 mile) Over the Road Test with HySEE Biodiesel in a Heavy Duty Truck

2000-09-11
2000-01-2647
In July 1997, the Pacific Northwest and Alaska Regional Bioenergy Program, in cooperation with several industrial and institutional partners initiated a long-haul 322,000 km (200,000 mile) operational demonstration using a biodiesel and diesel fuel blend in a 324 kW (435 HP), Caterpillar 3406E Engine, and a Kenworth Class 8 heavy duty truck. This project was designed to: develop definitive biodiesel performance information, collect emissions data for both regulated and non-regulated compounds including mutagenic activity, and collect heavy-duty operational engine performance and durability information. To assess long-term engine durability and wear; including injector, valve and port deposit formations; the engine was dismantled for inspection and evaluation at the conclusion of the demonstration. The fuel used was a 50% blend of biodiesel produced from used cooking oil (hydrogenated soy ethyl ester) and 50% 2-D petroleum diesel.
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

2008-04-14
2008-01-0453
A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Technical Paper

A Case Study for Life Cycle Assessment (LCA) as an Energy Decision Making Tool: The Production of Fuel Ethanol from Various Feedstocks

1998-11-30
982205
Life Cycle Analysis (LCA) considers the key environmental impacts for the entire life cycle of alternative products or processes in order to select the best alternative. An ideal LCA would be an expensive and time consuming process because any product or process typically involves many interacting systems and a considerable amount of data must be analysed for each system. Practical LCA methods approximate the results of an ideal analysis by setting limited analysis boundaries and by accepting some uncertainty in the data values for the systems considered. However, there is no consensus in the LCA field on the correct method of selecting boundaries or on the treatment of data set uncertainty. This paper demonstrates a new method of selecting system boundaries for LCA studies and presents a brief discussion on applying Monte Carlo Analysis to treat the uncertainty questions in LCA.
Technical Paper

A Chemical Method for the Visualisation of Flow Maldistribution in a Catalytic Converter

1999-12-01
1999-01-3076
Exhaust gas flow maldistribution can strongly affect the performance of catalytic converters. As part of an on-going programme concerned with optimising converter designs, flow maldistribution within catalyst monoliths resulting from the use of different shaped inlet cones was investigated. Computational fluid dynamics (CFD) techniques were used to predict gas velocities within the catalyst, and reaction of low levels of hydrogen sulfide in the gas was used to visualise the velocity profile on monoliths coated with a lead acetate indicator. This was done both in laboratory-scale experiments at room temperature with low flow-rates, and in a vehicle exhaust system under reduced temperature conditions. Flow patterns were produced for an underfloor catalyst system under real driving conditions with this unobtrusive chemical technique.
Technical Paper

A Compact 10 kW Electric Power Range Extender Suitable for Plug-In and Series Hybrid Vehicles

2011-09-11
2011-24-0085
The paper discusses the concept, specification and overall performance of a 10 kW electric power range extender suitable for electric plug-in and series hybrid vehicles, based on a single cylinder, high speed, four stroke internal combustion engine, tested and developed at Istituto Motori CNR of Italy. This unit has been conceived from the beginning as a compact on board recharging system for the mentioned kind of means, and especially for city cars and small commercial vehicles. The paper starts by defining some characteristics, advantages and drawbacks of an electric city car, followed by the criteria adopted to characterize the nominal power of the range extender. Then, the ratio which leaded to the adoption of a single cylinder internal combustion engine is discussed, followed by an explanation of the main design characteristics of the whole unit.
Technical Paper

A Comparative Analysis of Direct Injection into a Pressurized Chamber Using an Automatic Image Treatment Methodology

2016-10-25
2016-36-0163
A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
Technical Paper

A Comparative Analysis of Ethanol Versus Gasoline as a Fuel in Production Four-Stroke Cycle Automotive Engines

1995-12-01
952749
This paper presents the findings of a study that compared the fuel efficiency, power, emissions, engine wear and material compatability characteristics of automotive four-stroke cycle engines fueled by E95 (95 % ethyl alcohol and 5% lead free regular gasoline) and 87 pump octane number lead-free gasoline. A group of six senior Automotive Engineering Technology students, conducted the research over a one-year period. Two Mankato State University faculty served as directors for the project. The laboratory facilities at Mankato State University were used for vehicle modification and testing. Two identically equipped 1994 Geo Metros with 1.0 liter, three cylinder, throttle body fuel injected engines were used for this study. After a 6440 km (4000 mile) break-in period, to assure the cars performance characteristics were equal, one of the vehicles was converted to run on E95.
Technical Paper

A Comparative Analysis on the Spray Penetration of Ethanol, Gasoline and Iso-Octane Fuel in a Spark-Ignition Direct-Injection Engine

2014-04-01
2014-01-1413
This study aims to clarify the spray development of ethanol, gasoline and iso-octane fuel, delivered by a multi-hole injector and spark-ignition direct-injection (SIDI) fuelling system. The focus is on how fuel properties impact temporal and spatial evolution of sprays at realistic ambient conditions. Two optical facilities were used: (1) a constant-flow spray chamber simulating cold-start conditions and (2) a single-cylinder SIDI engine running at normal, warmed-up operating conditions. In these optical facilities, high-speed Mie-scattering imaging is performed to measure penetrations of spray plumes at various injection pressures of 4, 7, 11 and 15 MPa. The results show that the effect of fuel type on the tip penetration length of the sprays depends on the injection conditions and the level of fuel jet atomisation and droplet breakup.
Technical Paper

A Comparative Assessment of Current Gasohol Fuel Economy Data

1980-08-01
800889
The use of ethyl alcohol as a motor fuel blending agent has been promoted as method for reducing the consumption of petroleum. A mixture of 90 volume percent unleaded regular gasoline and 10 volume percent anhydrous ethyl alcohol, popularly known as “Gasohol,” has probably received the most current interest. This report is a summary and analysis of all currently available comparative Gasohol fuel consumption data. Usable data were eventually obtained from sixteen (16) different Gasohol test programs conducted by various public and private organizations. Ten (10) of these programs were conducted with chassis dynamometers, and the remaining six (6) were road tests of varying duration. Data from each or the test programs were subjected to a statistical analysis to determine whether the results were significant. Finally, all of the data were combined in order to determine an overall mean Gasohol fuel economy effect.
Technical Paper

A Comparative Study of the Ignition and Combustion Properties of Ethanol-Indolene Blends During HCCI Operation of a Single Cylinder Engine

2012-04-16
2012-01-1124
An experimental study has been conducted to investigate the effects of indolene-ethanol blends on engine performance during homogeneous charge compression ignition (HCCI) operation of single-cylinder engine. The engine performance and HCCI stability were investigated and the high enthalpy of vaporization of ethanol resulted in significant intake charge cooling and limited the stable HCCI operation to higher intake temperatures. In the second part of the study, intake air preheat temperature was used to compensate for some of the thermal effects introduced by the fuel blends. The effects of equivalence ratio at a same end of compression temperature for different fuel blends showed that increasing the ethanol content of the fuel blend can extend the stable HCCI lean operating limit. Engine performance was characterized by in-cylinder pressure data, heat release rate, indicated mean effective pressure and exhaust gas emissions (NO and HC).
Technical Paper

A Comparative Study on Different Methods of Using Waste Cooking Oil as Fuel in a Compression Ignition Engine

2017-03-28
2017-01-0876
Different methods to improve the performance of a WCO (waste cooking oil of sunflower) based mono cylinder compression ignition (CI) engine were investigated. Initially WCO was converted into its emulsion by emulsification process and tested as fuel. In the second phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. In the third phase, the engine was modified to work in the dual fuel mode with hydrogen being used as the inducted fuel and either WCO or WCO emulsion used as the pilot fuel. All the tests were carried out at 100% and 40% of the maximum load (3.7 kW power output) at the rated speed of 1500 rpm. Engine data with neat diesel and neat WCO were used for comparison. WCO emulsion indicated considerable improvement in performance. The smoke and NOx values were noted to be less than neat WCO.
X