Refine Your Search

Topic

Author

Search Results

Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
HISTORICAL
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
CURRENT
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Standard

A Guide to the Reliability-Centered Maintenance (Rcm) Standard

2023-11-08
WIP
JA1012
SAE JA1012 (“A Guide to the Reliability-Centered Maintenance (RCM) Standard”) amplifies and clarifies each of the key criteria listed in SAE JA1011 (“Evaluation Criteria for RCM Processes”), and summarizes additional issues that must be addressed in order to apply RCM successfully.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES

1990-03-01
HISTORICAL
J2071_199003
As a simulation of road driving, wind tunnel testing of full-size vehicles produces certain errors in the aerodynamic forces, aerodynamic moments, and surface pressures. The magnitude of these errors, in general, depends on the following: a Flow quality b Determination of the reference dynamic pressure c Wind tunnel floor boundary layer d Test section geometry and position of the car within that geometry e Shape of the vehicle f Blockage ratio: The ratio of the cross-sectional area of the vehicle to the cross-sectional area of the wind tunnel nozzle g Wheel rotation h Internal flow in the model The SAE Standards Committee, Open Throat Wind Tunnel Adjustments had as a goal to document the knowledge of the influence of model interference on wind tunnel test results for automotive open jet wind tunnels.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES - OPEN THROAT WIND TUNNEL ADJUSTMENT

1994-06-01
CURRENT
J2071_199406
As a simulation of road driving, wind tunnel testing of full-size vehicles produces certain errors in the aerodynamic forces, aerodynamic moments, and surface pressures. The magnitude of these errors, in general, depends on the following: a Flow quality b Determination of the reference dynamic pressure c Wind tunnel floor boundary layer d Test section geometry and position of the car within that geometry e Shape of the vehicle f Blockage ratio: The ratio of the cross-sectional area of the vehicle to the cross-sectional area of the wind tunnel nozzle g Wheel rotation h Internal flow in the model The SAE Standards Committee, Open Throat Wind Tunnel Adjustments had as a goal to document the knowledge of the influence of model interference on wind tunnel test results for automotive open jet wind tunnels.
Standard

AERODYNAMIC TESTING OF ROAD VEHICLES—TESTING METHODS AND PROCEDURES

1993-01-01
HISTORICAL
J2084_199301
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model.
Standard

AIR BRAKE GLADHAND SERVICE (CONTROL) AND EMERGENCY (SUPPLY) LINE COUPLERS

1967-11-01
HISTORICAL
J318_196711
This SAE Recommended Practice is intended to provide a design, critical dimensions, performance requirements, and identification for gladhand-type air line couplers used to connect the brake systems of trucks, truck-tractors, and trailers when these vehicles are joined to operate as a combination unit.
Standard

ALTERNATIVE AUTOMOTIVE FUELS

1990-06-01
HISTORICAL
J1297_199006
This SAE Information Report provides information on certain fuels that are being used or have been suggested as alternatives to motor gasoline (SAE J312) or automotive diesel fuel (SAE J313) for use in spark-ignition or compression-ignition engines. Some of these fuels are derived from petroleum while others are from nonpetroleum sources.
Standard

APPLICATION OF HYDRAULIC REMOTE CONTROL TO AGRICULTURAL TRACTORS AND TRAILING TYPE AGRICULTURAL IMPLEMENTS

1991-03-01
HISTORICAL
J716_199103
This SAE Standard gives the specifications and dimensions for the assembly and clearances common to hydraulically-operated cylinders and to trailing-type farm implements. The specifications given permit the interchangeability of hydraulic operation between tractors equipped with a cylinder and trailing-type implements designed for this purpose, the tractor possessing enough power at its drawbar to operate the implement; and the transference of the hydraulic cylinder from one implement to another. This document applies to three categories of agricultural tractors, as follows in Table 1:
X