Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

A 3D CFD Simulation of GDI Sprays Accounting for Heat Transfer Effects on Wallfilm Formation

2017-09-04
2017-24-0041
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
Technical Paper

Effects of Thermodynamic Conditions and Nozzle Geometry in Gaseous Fuels Direct Injection Process for Advanced Propulsion Systems

2022-03-29
2022-01-0505
Direct injection of gaseous fuels usually involves the presence of under-expanded jets. Understanding the physics of such process is imperative for developing Direct Injection (DI) internal combustion engines fueled, for example, by methane or hydrogen. An experimental-numerical characterization of the under-expanded jets issued from an innovative multi-hole injector, designed for application in heavy-duty engines, is carried out. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and, then, a numerical simulation procedure was validated, allowing a comprehensive injection process analysis. A high-order and density-based solver, capable of reproducing the most relevant features of the under-expanded jets, was developed within OpenFOAM framework. Initially the effects of the upstream-to-downstream pressure ratio, namely Net Pressure Ratios (NPR), on the spray morphology were investigated.
Journal Article

Effects of Ultra-High Injection Pressure and Flash Boiling Onset on GDI Sprays Morphology

2023-04-11
2023-01-0299
Ultra-high injection pressures, as well as flash-boiling occurrence, are among the most important research fields recently explored for improving Gasoline Direct Injection (GDI) engine performance. Both of them play a key role in the enhancement of the air/fuel mixing process, in the reduction of tailpipe pollutant emissions, as well as in the investigation of new combustion concepts. Injector manufacturers are even more producing devices with ultra-high injection pressures capable of working with flashing sprays. Flash-boiling of fuel sprays occurs when a super-heated fuel is discharged into an environment whose pressure is lower than the saturation pressure of the fuel and can dramatically alter spray formation due to complex two-phase flow effects and rapid droplet vaporization. In GDI engines, typically, it occurs during the injection process when high fuel temperatures make its saturation pressures higher than the in-cylinder one.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Technical Paper

Experimental and Numerical Characterization of Gasoline-Ethanol Blends from a GDI Multi-Hole Injector by Means of Multi-Component Approach

2013-09-08
2013-24-0002
This paper reports an experimental and numerical investigation of the spray structure development for pure gasoline fuel and two different ethanol-gasoline blends (10% and 85% ethanol). A numerical methodology has been developed to improve the prediction of the pure and blends fuel spray. The fuel sprays have been simulated by means of a 3D-CFD code, adopting a multi-component approach for the fuel simulations. The vaporization behavior of the real fuel has been improved testing blends of 7 hydrocarbons and a reduced multi-component model has been defined in order to reduce the computational cost of the CFD simulations. Particular care has been also dedicated to the modeling of the atomization and secondary breakup processes occurring to the GDI sprays. The multi-hole jets have been simulated by means of a new atomization approach combined with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model.
Technical Paper

Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines

2020-09-15
2020-01-2124
Compressed Natural Gas (CNG) is regarded as a promising fuel for spark-ignited (SI) internal combustion engines (ICE) to improve engine thermal efficiency and reduce both carbon dioxide and pollutant emissions. Significant advantages of CNG are higher-octane number, higher hydrogen to carbon ratio, and lower energy-specific CO2 emissions compared with gasoline. More, it can be produced in renewable ways, and is more widespread and cheaper than conventional liquid fossil fuels. In this regard, the direct injection of CNG engines can be considered a promising technology for highly efficient and low-emission future engines. This work reports an experimental and numerical characterization of high-pressure methane jets from a multi-hole injector for direct injection engines.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

Fuzzy Logic Approach to GDI Spray Characterization

2016-04-05
2016-01-0874
Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
Technical Paper

GDI Spray-Wall Interaction with Numerical Characterization: Wall Temperature Influence

2015-04-14
2015-01-0917
The work analyses, from both an experimental and a numerical point of view, the impingement of a spray generated from a GDI injector on a hot solid wall. The temperature of the surface is identified as an important parameter affecting the outcome after impact. A gasoline spray issuing from a customized single-hole injector is characterized in a quiescent optically-accessible vessel as it impacts on an aluminum plate placed at 22.5 mm from the injector tip. Optical investigations are carried out at atmospheric back-pressure by a direct schlieren optical set-up using a LED as light source. A synchronized C-Mos high-speed camera captures cycle-resolved images of the evolving impact. The spatial and temporal evolution of the liquid and vapor phases are derived. They serve to define a data base to be used for the validation of a properly formulated 3D CFD model suitable to describe the impact of the fuel on the piston head in a real engine.
Technical Paper

Imaging and Vibro-Acoustic Diagnostic Techniques Comparison for a GDI Fuel Injector

2019-09-09
2019-24-0058
This work presents the results of an experimental investigation on a GDI injector, in order to analyze fuel injection process and atomization phenomenon, correlating imaging and vibro-acoustic diagnostic techniques. A single-hole, axially-disposed, 0.200 mm diameter GDI injector was used to spray commercial gasoline in a test chamber at room temperature and atmospheric backpressure. The explored injection pressures were ranged from 5.0 to 20.0 MPa. Cycle-resolved acquisitions of the spray evolution were acquired by a high-speed camera. Simultaneously, the vibro-acoustic response of the injector was evaluated. More in detail, noise data acquired by a microphone sensor were analyzed for characterizing the acoustic emission of the injection, while a spherical loudspeaker was used to excite the spray injection at a proper distance detecting possible fuel spray resonance phenomena.
Technical Paper

Multiple Injection in a Mixed Mode GDI Boosted Engine

2010-05-05
2010-01-1496
A numerical investigation is performed with the aim of understanding the potential benefits of multiple injections in the mixed mode boosting operation of a Gasoline Direct Injection (GDI) engine. The study is carried out by firstly characterizing a high pressure multi-hole injector from the experimental point of view in the split injection operation. Measurements of the fuel injection rate are made through an AVL Meter operating on the Bosch principle. The injector is tested using gasoline in a double pulse strategy. The injection pressure is varied between 5.0 and 25.0 MPa with the pulse durations calibrated for delivering a total mass up to 50 mg/str. The choice of the dwell time between two successive injection events is achieved by firstly defining the minimum time compatible with the mechanical characteristics of both the injector and the injector driver.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Transient Heat Transfer Effects on a Gasoline Spray Impact against Hot Surfaces: Experimental and Numerical Study

2017-09-04
2017-24-0107
Gasoline direct injection (GDI) engines are characterized by complex phenomena involving spray dynamics and possible spray-wall interaction. Control of mixture formation is indeed fundamental to achieve the desired equivalence ratio of the mixture, especially at the spark plug location at the time of ignition. Droplet impact on the piston or liner surfaces has also to be considered, as this may lead to gasoline accumulation in the liquid form as wallfilm. Wallfilms more slowly evaporate than free droplets, thus leading to local enrichment of the charge, hence to a route to diffusive flames, increased unburned hydrocarbons formation and particulate matter emissions at the exhaust. Local heat transfer at the wall obviously changes if a wallfilm is present, and the subtraction of the latent heat of vaporization necessary for secondary phase change is also an issue deserving a special attention.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver

2021-09-05
2021-24-0057
Among the others, natural gas (NG) is regarded as a potential solution to enhance the environmental performance of internal combustion engines. Low carbon-to-hydrogen ratio, worldwide relatively homogeneous distribution and reduced price are the reason as, lately, many researchers efforts have been put in this area. In particular, this work focuses on the characterization of the injection process inside a constant volume chamber (CVC), which could provide a contribution to the development of direct injection technologies for a gaseous fuel. Direct injection of a gaseous fuel involves the presence of under-expanded jets whose knowledge is fundamental to achieve the proper mixture formation prior to the combustion ignition. For this reason, a density based solver was developed within the OpenFOAM library in order to simulate the jet issued from an injector suitable for direct injection of methane.
X