Refine Your Search

Topic

Search Results

Technical Paper

A New Approach to Modeling Driver Reach

2003-03-03
2003-01-0587
The reach capability of drivers is currently represented in vehicle design practice in two ways. The SAE Recommended Practice J287 presents maximum reach capability surfaces for selected percentiles of a generic driving population. Driver reach is also simulated using digital human figure models. In typical applications, a family of figure models that span a large range of the target driver population with respect to body dimensions is positioned within a digital mockup of the driver's workstation. The articulated segments of the figure model are exercised to simulate reaching motions and driver capabilities are calculated from the constraints of the kinematic model. Both of these current methods for representing driver reach are substantially limited. The J287 surfaces are not configurable for population characteristics, do not provide the user with the ability to adjust accommodation percentiles, and do not provide any guidance on the difficulty of reaches that are attainable.
Technical Paper

A Task-Based Stepping Behavior Model for Digital Human Models

2006-07-04
2006-01-2364
Cyclical stepping (gait) has been studied extensively. Some of these results are reflected in the straight and curved path step-following algorithms in commercial digital human modeling (DHM) implementations. With the aid of these algorithms, DHM users define start, intermediate, and end path points and the software generates a walking-like motion along the path. Most of these algorithms have substantial limitations, among them that the figures exhibit “foot skate,” meaning that the kinematic constraint of foot contact with the ground is not respected. Turning is accomplished by pivoting the entire figure, rather than through realistic lower-extremity motions. The simulation of the non-cyclical stepping motions accompanying manual material handling pickup and delivery tasks requires manual manikin manipulation. This paper proposes a paradigm for the simulation of stepping behavior in digital human models based on a model of foot placements and motions.
Technical Paper

An Improved Seating Accommodation Model with Application to Different User Populations

1998-02-23
980651
A new approach to driver seat-position modeling is presented. The equations of the Seating Accommodation Model (SAM) separately predict parameters of the distributions of male and female fore/aft seat position in a given vehicle. These distributions are used together to predict specific percentiles of the combined male-and-female seat-position distribution. The effects of vehicle parameters-seat height, steering-wheel-to-accelerator pedal distance, seat-cushion angle, and transmission type-are reflected in the prediction of mean seat position. The mean and standard deviation of driver population stature are included in the prediction for the mean and standard deviation of the seat-position distribution, respectively. SAM represents a new, more flexible approach to predicting fore/aft seat-position distributions for any driver population in passenger vehicles. Model performance is good, even at percentiles in the tails of the distribution.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

Application of Digital Human Modeling to the Design of a Postal Delivery Vehicle

2005-06-14
2005-01-2675
The development of a new carrier route vehicle for the U.S. Postal Service began with the design of the vehicle interior from an operator-centered perspective. A task analysis of the postal worker while driving and while performing mail-handling operations guided the layout of the vehicle interior. The Jack™ human modeling software was used, along with SAE Recommended Practices and other tools, to create a vehicle environment that will accommodate a large percentage of the operator population. The challenges of designing for this unique work environment provided a good opportunity to evaluate the relative strengths and weaknesses of the available human factors tools, including the Jack™ digital human figure model. This paper describes the development of the vehicle interior, discusses some lessons learned, and concludes with recommendations for increased functionality and improved integration of vehicle interior design tools.
Technical Paper

Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System

2007-06-12
2007-01-2504
Most current applications of digital human figure models for ergonomic assessments of manual tasks focus on the analysis of a static posture. Tools available for static analysis include joint-specific strength, calculation of joint moments, balance maintenance capability, and low-back compression or shear force estimates. Yet, for many tasks, the inertial loads due to acceleration of body segments or external objects may contribute significantly to internal body forces and tissue stresses. Due to the complexity of incorporating the dynamics of motion into analysis, most commercial software packages used for ergonomic assessment do not have the capacity to include dynamic effects. Thus, commercial human modeling packages rarely provide an opportunity for the user to determine if a static analysis is sufficient.
Technical Paper

Assessing the Validity of Kinematically Generated Reach Envelopes for Simulations of Vehicle Operators

2003-06-17
2003-01-2216
Assessments of reach capability using human figure models are commonly performed by exercising each joint of a kinematic chain, terminating in the hand, through the associated ranges of motion. The result is a reach envelope determined entirely by the segment lengths, joint degrees of freedom, and joint ranges of motion. In this paper, the validity of this approach is assessed by comparing the reach envelopes obtained by this method to those obtained in a laboratory study of men and women. Figures were created in the Jack human modeling software to represent the kinematic linkages of participants in the laboratory study. Maximum reach was predicted using the software's kinematic reach-envelope generation methods and by interactive manipulation. Predictions were compared to maximum reach envelopes obtained experimentally. The findings indicate that several changes to the normal procedures for obtaining maximum reach envelopes for seated tasks are needed.
Technical Paper

Cervical Spine Geometry in the Automotive Seated Posture: Variations with Age, Stature, and Gender

2004-11-01
2004-22-0014
In the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 “normal” adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects’ cervical spines and heads were taken with the subjects seated in a simulated automotive neutral posture, as well as with their necks in full-voluntary flexion and full-voluntary extension. Although the cervical spine and lower head geometry were previously measured manually and documented, new technologies have enabled computer digitization of the scanned x-ray images and a more comprehensive and detailed analysis of the variation in cervical spine and lower head geometry with subject age, stature, and gender. After scanning the radiographic images, 108 skeletal landmarks on the cervical vertebrae and 10 head landmarks were digitized.
Technical Paper

Characterization of Knee-Thigh-Hip Response in Frontal Impacts Using Biomechanical Testing and Computational Simulations

2008-11-03
2008-22-0017
Development and validation of crash test dummies and computational models that are capable of predicting the risk of injury to all parts of the knee-thigh-hip (KTH) complex in frontal impact requires knowledge of the force transmitted from the knee to the hip under knee impact loading. To provide this information, the knee impact responses of whole and segmented cadavers were measured over a wide range of knee loading conditions. These data were used to develop and help validate a computational model, which was used to estimate force transmitted to the cadaver hip. Approximately 250 tests were conducted using five unembalmed midsize male cadavers. In these tests, the knees were symmetrically impacted with a 255-kg padded impactor using three combinations of knee-impactor padding and velocity that spanned the range of knee loading conditions produced in FMVSS 208 and NCAP tests. Each subject was tested in four conditions.
Technical Paper

Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-related Injury Risk

2015-11-09
2015-22-0014
The aging population is a growing concern as the increased fragility and frailty of the elderly results in an elevated incidence of injury as well as an increased risk of mortality and morbidity. To assess elderly injury risk, age-specific computational models can be developed to directly calculate biomechanical metrics for injury. The first objective was to develop an older occupant Global Human Body Models Consortium (GHBMC) average male model (M50) representative of a 65 year old (YO) and to perform regional validation tests to investigate predicted fractures and injury severity with age. Development of the GHBMC M50 65 YO model involved implementing geometric, cortical thickness, and material property changes with age. Regional validation tests included a chest impact, a lateral impact, a shoulder impact, a thoracoabdominal impact, an abdominal bar impact, a pelvic impact, and a lateral sled test.
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

2016-11-07
2016-22-0014
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
Technical Paper

Digital Human Modeling Research and Development User Needs Panel

2005-06-14
2005-01-2745
This panel provided a forum for discussion of future research and development desired by users and potential users of DHM technologies. The discussion was based on the experiences of users from various sectors and industries. Panelists provided written statements and delivered short presentations prior to opening the session to audience discussion. The panel was designed to inform and drive research and development plans to fill these needs.
Journal Article

Distribution of Belt Anchorage Locations in the Second Row of Passenger Cars and Light Trucks

2013-04-08
2013-01-1157
Seat belt anchorage locations have a strong effect on occupant protection. Federal Motor Vehicle Safety Standard (FMVSS) 210 specifies requirements for the layout of the anchorages relative to the seating reference point and seat back angle established by the SAE J826 H-point manikin. Sled testing and computational simulation has established that belt anchorage locations have a strong effect on occupant kinematics, particularly for child occupants using the belt as their primary restraint. As part of a larger study of vehicle geometry, the locations of the anchorage points in the second-row, outboard seating positions of 83 passenger cars and light trucks with a median model year of 2005 were measured. The lower anchorage locations spanned the entire range of lap belt angles permissible under FMVSS 210 and the upper anchorages (D-ring locations) were distributed widely as well.
Technical Paper

Laboratory Investigations and Mathematical Modeling of Airbag-Induced Skin Burns

1994-11-01
942217
Although driver-side airbag systems provide protection against serious head and chest injuries in frontal impacts, injuries produced by the airbag itself have also been reported. Most of these injuries are relatively minor, and consist primarily of skin abrasions and burns. Previous investigations have addressed the mechanisms of airbag-induced skin abrasion. In the current research, laboratory studies related to the potential for thermal burns due to high-temperature airbag exhaust gas were conducted. A laboratory apparatus was constructed to produce a 10-mm-diameter jet of hot air that was directed onto the leg skin of human volunteers in time-controlled pulses. Skin burns were produced in 70 of 183 exposures conducted using air temperatures ranging from 350 to 550°C, air velocities from 50 to 90 m/s, and exposure durations from 50 to 300 ms.
Technical Paper

Modeling Ascending and Descending Stairs Using the Human Motion Simulation Framework

2009-06-09
2009-01-2282
The Human Motion Simulation Framework (Framework) is a hierarchical set of algorithms for predicting and analyzing task-oriented human motion. The Framework was developed to improve the performance of commercial human modeling software by increasing the accuracy of predicted motions and the speed of generating simulations. This paper presents the addition of stair ascending and descending to the Transition Stepping and Timing (Transit) model, a component of the Framework that predicts gait and acyclic stepping.
Technical Paper

Modeling Population Distributions of Subjective Ratings

2001-06-26
2001-01-2122
Most human figure models used in ergonomic analyses present postural comfort ratings based on joint angles, and present a single comfort score for the whole body or on a joint-by-joint basis. The source data for these ratings is generally derived from laboratory studies that link posture to ratings. Lacking in many of these models is a thorough treatment of the distribution of ratings for the population of users. Information about ratings distributions is necessary to make cost-effective tradeoffs when design changes affect subjective responses. This paper presents experimental and analytic methods used to develop distribution models for incorporating subjective rating data in ergonomic assessments.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

New Concepts in Vehicle Interior Design Using ASPECT

1999-03-01
1999-01-0967
The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program developed a new physical manikin for seat measurement and new techniques for integrating the seat measurements into the vehicle design process. This paper presents an overview of new concepts in vehicle interior design that have resulted from the ASPECT program and other studies of vehicle occupant posture and position conducted at UMTRI. The new methods result from an integration of revised versions of the SAE seat position and eyellipse models with the new tools developed in ASPECT. Measures of seat and vehicle interior geometry are input to statistical posture and position prediction tools that can be applied to any specified user population or individual occupant anthropometry.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
X