Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

10PC20 Swash Plate Type Variable Displacement Compressor for Automotive Air Conditioners

1992-02-01
920260
Up to now, various compressor models for automotive air conditioners have been manufactured to answer the needs of car manufacturers for fuel economy and quietness. The 10PC20 compressor, developed for automotive air conditioners, is the world's first swash plate type compressor having a continuously variable displacement mechanism. The 10PC20 is aimed at realizing a large displacement compressor with a continuously variable displacement mechanism, which has not been achieved until today. To achieve this goal, the 10PC20 design is based on the swash plate type compressor, consisting of double-headed pistons, which is adaptable to a large displacement and has excellent rotating balance and durability. The 10PC20 changes its displacement continuously by changing the inclination of the swash plate (swash plate angle) continuously. (See photo. 1 and 2) The 10PC20 adopts two variable displacement principles.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Technical Paper

1963 Pure Oil Performance Trials

1963-01-01
630280
Background of the Pure Oil performance trials on six classes of automobiles is presented and the evolution of test requirements described. Three tests are run: the economy test to establish how far a vehicle can go over a prescribed course on one gallon of gasoline; the acceleration test which determines acceleration time from 25 to 70 mph in seconds; and the braking test where stopping distance in feet is measured for a stop from 60 mph. Each test is described from the point of view of rules, recording instruments, and penalties for infractions of rules. Test results are presented.
Technical Paper

1964 Pure Oil Performance Trials

1964-01-01
640476
A review of the Pure Oil Performance Trials conducted at Daytona International Speedway are presented. Background information pertaining to conducting of tests, design of the equipment, and instrumentation required for the various events are discussed. The performance trials have evolved into three basic tests -- Economy, Acceleration, and Braking. The objective of the Performance Trials is to provide data that motorists can utilize in evaluating new cars and selecting new models.
Technical Paper

1D Modeling of HVAC Unit Air Flow for Automatic Climate Control Simulations

2021-04-06
2021-01-0215
Advanced control techniques are widely used in different automotive applications including climate control. Significant costs associated with the development and calibration of such controllers can be reduced if these tasks are conducted in a virtual environment. Such a virtual environment can be developed by integrating the controller with the system model. Different scenarios can be then simulated to make sure functional objectives of the system are met. 1D models provide the necessary level of accuracy without imposing extra computational cost in such virtual environments. As such, they are perfect candidates for model, hardware or software-in-the loop validation benches for controls. Performance of a heating, ventilation and air-conditioning (HVAC) system can be controlled through the settings of the components like mode door, blend door, recirculation door, blower, and the compressor.
Journal Article

1D-3D Online Coupled Transient Analysis for Powertrain-Control Integrated Thermal Management in an Electric Vehicle

2021-04-06
2021-01-0237
Thermal management in electric vehicles (EVs) has attracted more attention due to its increasing significance, and computer aided engineering (CAE) plays an important role in its development. A 1D-3D online coupling approach is proposed to completely characterize transient thermal performance of an electric vehicle on a high performance computer (HPC) platform. The 1D thermal management model, consisting of air conditioning, motor cooling and battery cooling systems, is integrated with the 1D control strategy model and powertrain model consisting of motor, battery, driver and vehicle models. The 3D model is established for the air flow around the full vehicle and through its underhood. The 3D model gives boundaries such as heat exchanger air flowrates and heat flows on some component surfaces to the 1D model, while 1D gives back boundaries such as heat exchanger heat loads, component surface temperatures and fan speed simultaneously.
Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Book

2013 Passenger Car Yearbook

2013-10-07
Each year car manufacturers release new production models that are unique and innovative. The production model is the result of a lengthy process of testing aerodynamics, safety, engine components, and vehicle styling. The new technologies introduced in these vehicles reflect changing standards as well as trends of the market. From Acura to Volvo, this book provides a snapshot of the key engineering concepts and trends of the passenger vehicle industry over the course of a year. For each of the 43 new production models, articles from Automotive Engineering International (AEI) magazine detail technology developments as well as a comprehensive look at the 2013 passenger car models. This book provides those with an interest in new vehicles with all the information on the key automotive engineering and technology advancements of the year.
Book

2013 Passenger Car Yearbook and Concept Car Year in Review: 2013

2013-12-18
This set consists of two books, 2013 Passenger Car Yearbook, and Concept Car Year in Review: 2013. Both include articles that were written by the award-winning editors of Automotive Engineering International. The 2013 Passenger Car Yearbook details the key engineering developments in the passenger vehicle industry of the year. Each new car model is profiled in its own chapter with one or more articles. Concept Car Year in Review: 2013 provides insight to the key engineering ideas that were introduced in concept and prototype cars during that year.
Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
Book

2013 and 2014 Passenger Car Yearbook

2013-11-25
This set consists of two books, 2013 Passenger Car Yearbook, and 2014 Passenger Car Yearbook. Both include articles that were written by the award-winning editors of Automotive Engineering International. Both books detail the key engineering developments in the passenger vehicle industry of that year. Each new car model is profiled in its own chapter with one or more articles.
Book

2014 Passenger Car Yearbook

2013-12-10
Each year car manufacturers release new production models that are unique and innovative. These cars begin as concepts then go through the process of prototyping. The process of creating a new model can take years, involving extensive testing and refining of aerodynamics, safety, engine components, and vehicle styling. The production model is the result of this lengthy process, and its new technologies reflect the latest engineering standards as well as market trends. The 2014 Passenger Car Yearbook details the key engineering developments in the passenger vehicle industry of the year. Each new car model is profiled in its own chapter with one or more articles that were previously published and written by the award-winning editors of Automotive Engineering International. The novel engineering aspects of each new model are explored in depth.
Book

2014 Passenger Car Yearbook and Concept Car Year in Review: 2013

2013-12-18
This set consists of two books, 2014 Passenger Car Yearbook, and Concept Car Year in Review: 2013. Both include articles that were written by the award-winning editors of Automotive Engineering International. The 2014 Passenger Car Yearbook details the key engineering developments in the passenger vehicle industry of the year. Each new car model is profiled in its own chapter with one or more articles. Concept Car Year in Review: 2013 provides insight to the key engineering ideas that were introduced in concept and prototype cars during that year.
Technical Paper

36 Development of a High Performance Small Gas Engine for a Gas Engine Heat Pump

2002-10-29
2002-32-1805
GHP which, is the heat pump system for an air conditioning, is directly driven the compressor by a small gas engine. The NOx was reduced 70% less than a conventional gas engine with improvement of thermal efficiency. The combustion chamber shape using strong squish flow is improved in order that the pattern of a heat release is changed to be suitable. Because the relation between NOx and the thermal efficiency is the trade off relation, the air fuel ratio and the ignition timing must be precisely controlled. Detecting the change of the Pi variation calculated from the engine speed variation can control the air fuel ratio.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

3M Approach to Implementing Life Cycle Management

2000-03-06
2000-01-0594
3M is committed to continuously improving products and their manufacture toward the goal of sustainability. The 3M Life Cycle Management (LCM) program has been established to implement this goal. It utilizes a matrix tool to facilitate the review. The matrix consists of LCM Stage (Material Acquisition, R&D Operations, Manufacturing Operations, and Customer Use/Disposal) and Impact (Environment, Health, Safety, and Energy/Resources). The program is coordinated at the staff level by the Corporate Product Responsibility group. The corporate goal is to apply LCM to all new and existing products. The LCM program started with evaluations of new products within business units. Since 3M produces more than 60,000 products manufactured from more than 10,000 different raw materials, the routine evaluation of individual products challenges available staff and business unit resources. A technology-based approach for doing LCMs has been implemented to meet the challenge.
X