Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Comparison of Fuel Effects on Low Temperature Reactions in PPC and HCCI Combustion

2014-10-13
2014-01-2679
The current research focus on fuel effects on low temperature reactions (LTR) in Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC). LTR result in a first stage of heat release with decreasing reaction rate at increasing temperature. This makes LTR important for the onset of the main combustion. However, auto-ignition is also affected by other parameters and all fuel does not exhibit LTR. Moreover, the LTR does not only depend on fuel type but also on engine conditions. This research aims to understand how fuel composition affects LTR in each type of combustion mode and to determine the relative importance of chemical and physical fuel properties for PPC. For HCCI the chemical properties are expected to dominate over physical properties, since vaporization and mixing are completed far before start of combustion.
Technical Paper

Development of New Test Method for Evaluating HCCI Fuel Performance

2014-10-13
2014-01-2667
This study examines fuel auto-ignitability and shows a method for determining fuel performance for HCCI combustion by doing engine experiments. Previous methods proposed for characterizing HCCI fuel performance were assessed in this study and found not able to predict required compression ratio for HCCI auto-ignition (CRAI) at a set combustion phasing. The previous indices that were studied were the Octane Index (OI), developed by Kalghatgi, and the HCCI Index, developed by Shibata and Urushihara. Fuels with the same OI or HCCI Index were seen to correspond to a wide range of compression ratios in these experiments, so a new way to describe HCCI fuel performance was sought. The Lund-Chevron HCCI Number was developed, using fuel testing in a CFR engine just as for the indices for spark ignition (research octane number and motor octane number, RON and MON) and compression ignition (cetane number, CN).
Technical Paper

Emission Formation Study of HCCI Combustion with Gasoline Surrogate Fuels

2013-10-14
2013-01-2626
HCCI combustion can be enabled by many types of liquid and gaseous fuels. When considering what fuels will be most suitable, the emissions also have to be taken into account. This study focuses on the emissions formation originating from different fuel components. A systematic study of over 40 different gasoline surrogate fuels was made. All fuels were studied in a CFR engine running in HCCI operation. Many of the fuels were blended to achieve similar RON's and MON's as gasoline fuels, and the components (n-heptane, iso-octane, toluene, and ethanol) were chosen to represent the most important in gasoline; nparaffins, iso-paraffins, aromatics and oxygenates. The inlet air temperature was varied from 50°C to 150°C to study the effects on the emissions. The compression ratio was adjusted for each operating point to achieve combustion 3 degrees after TDC. The engine was run at an engine speed of 600 rpm, with ambient intake air pressure and with an equivalence ratio of 0.33.
Technical Paper

Ozone Seeding Effect on the Ignition Event in HCCI Combustion of Gasoline-Ethanol Blends

2017-03-28
2017-01-0727
The transportation sector adds to the greenhouse gas emissions worldwide. One way to decrease this impact from transportation is by using renewable fuels. Ethanol is a readily available blend component which can be produced from bio blend­stock, currently used blended with gasoline from low to high concentrations. This study focuses on a high octane (RON=97) gasoline blended with 0, 20, and 50, volume % of ethanol, respectively. The high ethanol blended gasoline was used in a light duty engine originally designed for diesel combustion. Due to the high octane rating and high ignition resistance of the fuel it required high intake temperatures of 443 K and higher to achieve stable combustion in in homogeneously charged compression ignition (HCCI) combustion operation at low load. To enable combustion with lower intake temperatures more commonly used in commercial vehicles, ozone was injected with the intake air as an ignition improver.
Technical Paper

Pressure Sensitivity of HCCI Auto-Ignition Temperature for Gasoline Surrogate Fuels

2013-04-08
2013-01-1669
An index to relate fuel properties to HCCI auto-ignition would be valuable to predict the performance of fuels in HCCI engines from their properties and composition. The indices for SI engines, the Research Octane Number (RON) and Motor Octane Number (MON) are known to be insufficient to explain the behavior of oxygenated fuels in an HCCI engine. One way to characterize a fuel is to use the Auto-Ignition Temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of Low Temperature Heat Release (LTHR) that is closely connected to the ignition properties of the fuel. A systematic study of fuels consisting of gasoline surrogate components of n-heptane, iso-octane, toluene, and ethanol was made. 21 fuels were prepared with RON values ranging from 67 to 97.
X