Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Study of Fuel Auto-ignitability on Premixed Compression Ignition Characteristics

2008-04-14
2008-01-0062
It has been clarified that diesel fuel properties have a great effect on the exhaust emissions and fuel consumption of a conventional diesel combustion regime. And as other diesel combustion regimes are applied in order to improve exhaust emissions and fuel consumption, it can be supposed that the fuel properties also have significant effects. The purpose of this study is to propose the optimum diesel fuel properties for a premixed compression ignition (PCI) combustion regime. In this paper, the effect of the auto-ignitability of diesel fuels on exhaust emissions and fuel consumption was evaluated using a heavy-duty single-cylinder test engine. In all experiments, fuels were injected using an electronically controlled, common-rail diesel fuel injector, and most experiments were conducted under high EGR conditions in order to reduce NOx emissions.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

Chemical Kinetic Study of a Cetane Number Enhancing Additive for an LPG DI Diesel Engine

2000-03-06
2000-01-0193
The oxidation mechanism of DTBP (Di-tertiary-butyl peroxide) and its role in butane oxidation have been investigated, as it pertains to the development of an LPG DI diesel engine. Ignition delay contours were analyzed to investigate the role of DTBP (ϕ≈0.2 to the total oxygen) in butane oxidation. At higher pressure and lower temperature regions, it was apparent that the addition of DTBP significantly enhances the ignition delay of butane, whereas at lower pressures and higher temperatures, this effect diminishes. Results of this study showed that the role of DTBP to enhance the ignition delay of the base fuel is through rapid heat release, rather than by radicals produced by decomposition during the base fuel ignition delay. Formaldehyde is a principal species involved in reactions for heat release in the higher pressure lower temperature region, comparable to diesel engine operating conditions.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

Combustion Process Modeling using a Reduced Mechanism in an LPG Lean Burn SI Engine

1999-10-25
1999-01-3481
Flame propagation characteristics, in a heavy-duty type LPG lean burn SI engine, were investigated by simulation methodology, using the global one step and the ten step chemical kinetic reaction mechanisms, respectively. The swirl ratio and equivalence ratio were varied to investigate their effects on flame front speed. The effect of increased swirl intensity on flame speed was very minor at ranges of equivalence ratio of this study. Flame front shape, however, was affected by swirl intensity. Circular flame front formed for a higher swirl ratio, which is in a qualitative accordance with that of measurements. Comparison between calculation and measurements of flame propagation characteristics shows a good agreement for both the global one step and the ten step chemical kinetic model. This work concludes that the reduced chemical kinetic reactions, consisting of ten steps, is useful for flame propagation study in an LPG SI engine.
Technical Paper

Comparison of Spray Characteristics in Butane and Diesel Fuels by Numerical Analysis

2000-10-16
2000-01-2941
The spray characteristics of n-butane were analyzed numerically using KIVA-3V code and compared with those of diesel under the same boundary conditions. The transient behavior of hollow cone spray was calculated not only in a constant volume chamber under various ambient conditions, but also in a premixed compression ignition engine. The spray characteristics were evaluated in terms of spray tip penetration and droplet size distribution. Various atomization sub-models such as TAB, Wave breakup and Wave-KH (Kelvin-Helmholtz) model were implemented in the code and validated by comparison with experimental data. The results show that mixture formation for butane proceeds faster than diesel fuel primarily due to a higher evaporation rate caused by butane's higher diffusivity in air. Furthermore, in a premixed compression ignition engine, the mixture of butane becomes more homogeneous than diesel by the end of compression stroke.
Technical Paper

Conversion of Nitric Oxide to Nitrogen Dioxide Using Hydrogen Peroxide

2000-06-19
2000-01-1931
Detailed chemical kinetic model of hydrogen peroxide (H2O2) into diesel exhaust gas has been executed to investigate its effect on the removal of nitric oxide(NO) by changing exhaust gas temperature and H2O2 addition amount. Flux analysis has also been done to clarify which reaction mainly affects NO-to-NO2 conversion. From the results of this study, it is shown that the optimal temperature condition to maximize the removal of NO exists near at 500K for OH addition condition, while that for H2O2 addition exists near at 800K. It is also shown that temperature window for the removal of NO becomes widened as the initial temperature of the exhaust gas increases, and NO-to-NO2 conversion rate decreases in proportion to the concentration of hydrocarbon(HC), although that of the total NOx remains the same level regardless of HC concentration. Finally, it is shown that HO2 + NO → NO2 + OH is mainly responsible for NO-to-NO2 conversion.
Technical Paper

Development of LPG SI and CI Engines for Heavy Duty Vehicles

2000-06-12
2000-05-0166
Development of LPG SI and CI engines for heavy duty vehicles has been carried out. In order to measure the performance and emissions of an LPG lean burn SI engine, the piston cavity, swirl ratio, and propane-butane fuel ratio were varied and tested. Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. A feasibility study of an LPG DI diesel engine also has been carried out to study the effectiveness of the selected cetane enhancing additives:Di-tertiary-butyl peroxide (DTBP). When more than 5 wt% DTBP was added to the base fuel, stable engine operation over a wide range of engine loads was possible. The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%.
Technical Paper

Development of Retrofit DME Diesel Engine Operating with Rotary Distributor Fuel Injection Pump

2003-03-03
2003-01-0758
In order to reduce environmental disruption due to exhaust PM and NOx emissions from diesel engines of dimethyl ether (DME) has been proposed the use for the next generation vehicles, because the discharge of the atmospheric pollutants is less. In this study, DME is used to fuel a retrofit type diesel engine, and operational tests were carried out using a rotary distributor fuel injection pump. In this experiment, comparison and examination of the effects of fuel injection pressure, nozzle hole diameter, and injection timing. When using DME as an alternative fuel, the fuel temperature affects engine operation. And diameter of the injector nozzle hole and larger injection quantity is regarded as factors affecting the improvement in engine performance. In addition, for understanding the DME spray in the cylinder, DME was sprayed in a constant volume chamber where atmospheric temperature and pressure increased simultaneously, and the result is compared and examined with diesel fuel.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
Technical Paper

Dual-Fuel Diesel Engine Using Butane

1992-02-01
920690
The authors tried to use LP gas, mainly butane, as the main fuel of diesel engines to reduce soot and to maintain high thermal efficiency. LP gas was injected in the direction of the intake valve directly as a spray to prevent knocking and to preserve high charging efficiency. The newly developed electronic fuel injection provided accurate fuel control and injection timing. As a result, the dual-fuel operation produced high thermal efficiency almost identical to that of diesel engines. Soot in engine exhaust was almost negligible. Three quarters of maximum output was obtained with butane, and only small amount of gas oil for idling, in spite of an high compression ratio of 17 for gas engines. Increasing the proportion of gas oil resulted in maximum output from a diesel engine and almost no soot output.
Technical Paper

Effects of Fuel Injection Conditions on Driving Performance of a DME Diesel Vehicle

2003-10-27
2003-01-3193
Since dimethyl ether (DME) is a synthetic fuel, it is possible to make it from natural gas, coal and biomass. It is a low-emission, oxygenated fuel, which does not generate soot in the exhaust. Therefore, it has recently been identified as a possible replacement for diesel fuel. In Japan, the new short-term emissions regulations will be enforced beginning in 2003, and the long-term emissions regulations are scheduled to be enforced in 2005. In order to meet these more stringent emissions regulations, existing diesel engines would not be as widely used in the near future as they currently are. This will thus bring about a more widespread use of DME engines due to their low emissions potential. Moreover, when the modification of existing diesel engines into DME engines is available at a moderate cost, the wider use of DME engines can be expected. This study targeted development and application of DME engine technology for diesel engine retrofit, in a used diesel vehicle.
Technical Paper

Engine Performance and Emission Characteristics of DME Diesel Engine With Inline Injection Pump Developed for DME

2004-06-08
2004-01-1863
The engine performance and exhaust characteristics of the DME-powered diesel engine with an injection system developed for DME were investigated. The injection pump is an inline type that can inject double amount of DME fuel compared to the base injection pump because the calorific value of DME is about half lower than that of diesel fuel. The effect of injection timing on engine performances such as thermal efficiency, engine torque, and exhaust characteristics were investigated. Maximum torque and power with DME could be achieved the same or greater level compared to diesel fuel operation. Considering over all engine performances, the best dynamic injection timings without EGR were -3, -3, -6 and -9 deg. ATDC in 1120, 1680, 2240 and 2800 rpm engine speeds respectively in this experiment.
Technical Paper

Evaluation of Medium Duty DME Truck Performance -Field Test Results and PM Characteristics-

2007-01-23
2007-01-0032
The performance of a medium duty DME truck was evaluated by field tests and engine bench tests. The DME vehicle was given a public license plate on October 2004, after which running tests were continued on public roads and a test course. The DME vehicle could run the whole distance, about 500 km, without refueling. The average diesel equivalent fuel consumption of the fully loaded DME truck was 5.75 km/l, running at 80 km/h on public highways. Remedying several malfunctions that occurred in the power-train subsystems enhanced the vehicle performance and operation. The DME vehicle accumulated 13,000 km as of August, 2006 with no observed durability trouble of the fuel injection pump. Disassembly and inspection of the fuel injectors after 7,700 km operation revealed a few differences in the nozzle tip and the needle compared to diesel fuel operation. However, the injectors were used again after cleanup.
Technical Paper

Experimental Investigation of Lubricity Improvement of Gas-to-liquid (GTL) Fuels with Additives for Low Sulphur Diesel Fuel

2003-05-19
2003-01-1948
In this study, lubricity improvers were added to three different GTL fuels, which were then quantified with a High Frequency Reciprocating Rig (HFRR) and compared with ultra low sulphur diesel fuel (ULS). Furthermore, the lubricity of mixtures of a GTL blended with ULS was also investigated. Two kinds of compounds were tested as lubricity improvers: unsaturated fatty acids (UFA-type) and partial UFA esters of glycerin (Ester-type). All GTL fuels showed less sensitivity to a lubricity additive than ULS did, but the ULS mixture had better than expected lubricity. Thus it was concluded that blending of GTLs with ULS can be regarded as one practical measure to sufficiently improve lubricity. HFRR tests performed under the same viscosity suggested that fuel composition had an important effect on its sensitivity to an additive, as well as viscosity.
Technical Paper

Experimental Study of Direct Injection Diesel Engine Fueled with Two Types of Gas To Liquid (GTL)

2002-10-21
2002-01-2691
In this study, the main properties of two types of gas-to-liquid (GTL) fuels were investigated. Then, performance and emission characteristics of a compression ignition engine fueled with GTLs were investigated by comparison with diesel fuel. GTL1 was composed of 100% paraffin by volume, and GTL2 was composed of 99.8% paraffin and 0.2% aromatics by volume. Most GTL fuel properties were comparable to those of diesel fuel, while both fuels have a higher cetane number and lower sulphur. A diesel engine could be operated with GTL fueling without any special engine modifications. Our tests showed that with the high cetane number of GTLs, the ignition delay was shorter, and combustion started earlier than with diesel fuel. With GTL1 operation, THC and soot emissions were lower than with diesel fuel operation, and even lower with GTL2 fueling.
Technical Paper

Flame Speed Measurements and Predictions of Propane, Butane and Autogas at High Pressures

1998-10-19
982448
Flame propagation at elevated pressures for propane, butane and autogas (20% propane and 80% butane by mass) were investigated. Flame arrival time was measured using ionization probes installed along the wall of a cylindrical combustion chamber. Flame radius was also measured using a laser schlieren technique. Results showed that the flame front speed decreased with increasing initial pressure, and the initial pressure effect on maximum flame front speed was correlated by the relationship Sf = 175·pi-0.15 (for Φ=1.0). Characteristics of flame front speed between propane, butane and autogas were very similar, whereas at fuel-rich conditions flame front speed of butane and autogas were higher than that of propane. A thermodynamic model to predict flame radius and speed as a function of time was derived and tested using measured pressure-time curves.
Technical Paper

Fuel Characteristics Evaluation of GTL for DI Diesel Engine

2004-03-08
2004-01-0088
In this study, advantages of GTL fueled DI diesel engine were observed, then, some cautionary areas, notably the aptitude for sealing materials, were investigated. Some advantages of using GTL as a diesel engine fuel include reduction of soot emission levels, power output and fuel consumption with GTL to conventional diesel fuel operation is equivalent, super-low sulfur content of GTL and its liquid state at normal temperature and pressure. However, there are some problems with putting GTL fuel on the market, such as lubricity, aptitude for sealing materials, high cetane index and high pour point. It is necessary to use additives to improve GTL's lubricity, and selecting the most appropriate type of lubricity improver is also important. The influence of GTL on the swelling properties of standard rubber materials seem basically the same, but it is necessary to notice on used rubbers.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
X