Refine Your Search

Search Results

Technical Paper

Approach to Low NOx and Smoke Emission Engines by Using Phenomenological Simulation

1993-03-01
930612
A phenomenological spray-combustion model of a D.I. Diesel engine was applied to study the engine parameters with potential for reducing NOx and smoke emissions. The spray-combustion model, first developed at the University of Hiroshima in 1976, has been sophisticated by incorporating new knowledge of diesel combustion. The model was verified using data from an experimental, single cylinder, D.I. diesel engine with a bore of 135mm and a stroke of 130mm. After the verification process, calculations were made under a wide range of the engine parameters, such as intake air temperature, intake air pressure, intake swirl ratio, nozzle hole diameter, injection pressure, air entrainment rate into the spray, and injection rate profile. These calculations estimated the effects of the engine parameters on NOx, smoke and specific fuel consumption. As a result of the calculations, an approach for the low NOx and smoke emission engine was found.
Technical Paper

Behaviors of Spray Droplets with and without Flat Wall Impingement

2021-09-05
2021-24-0058
Fuel spray impingement on the combustion chamber wall cannot be avoid in direct injection gasoline engines, resulting in insufficient combustion and unburned hydrocarbon/soot emissions from the engines. And the microscopic characteristics of the impinging spray have a close relation with the fuel film formation, which has a direct effect on the engine performance and emissions. Therefore, figuring out the droplet behaviors of the impinging spray is significantly important for improving the engine performance and reducing emissions. However, the microscopic characteristics of the impinging spray have not been deeply understood and the differences between the impinging and free spray are seldom mentioned in previous study. Therefore, particle image analysis (PIA) technique was applied to detect the microscopic characteristics at the capture location in order to track the droplet behaviors of the spray tip during the propagation process.
Journal Article

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Diesel Engine-Like Condition: Effects of Injection Pressure, Nozzle Hole Diameter and Impingement Distance

2019-12-19
2019-01-2183
Substantial amount of fuel energy input is lost by heat transfer through combustion chamber walls in the internal combustion engines. Thus, these heat losses account for reduced thermal efficiency, in that spray-wall impingement plays a crucial role in Direct Injection diesel engines. The objective of this study is to investigate the mechanism of the heat transfer from the spray/flame to the impinging wall under small diesel engine-like condition and how the spray characteristics are affected with regards to effect of injection pressure, nozzle hole diameter and impingement distance. The experiment results showed that injection pressure was predominant factor on spray-wall heat transfer.
Technical Paper

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Small Diesel Engine-Like Condition

2017-11-05
2017-32-0032
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
Journal Article

Characterization of Internal Flow and Spray Behaviors of Hole-Type Nozzle under Tiny and Normal Injection Quantity Conditions for Diesel Engine

2016-04-05
2016-01-0862
The tiny and normal injection quantity instances usually happen under the multi-injection strategy condition to restrain the uncontrollability of the ignition timing of the homogeneous charge compression ignition (HCCI) combustion concept. Meanwhile, instead of the traditional and fundamental single-hole diesel injector, the axisymmetric multi-hole injectors are usually applied to couple with the combustion chamber under most practical operating conditions. In the current paper, the internal flow and spray characteristics generated by single-hole and multi-hole (10 holes) nozzles under normal (2 mm3/hole) and tiny (0.3 mm3/hole) injection quantity conditions were investigated in conjunction with a series of experimental and computational methods. High-speed video observation was conducted at 10000 and 100000 fps under the condition of 120 MPa rail pressure, 1.5 MPa ambient pressure, room temperature, and nitrogen environment to visualize different spray properties.
Technical Paper

Combustion Characteristics of Diesel Spray with Temporally-Splitting High-Pressure Injection

2015-11-17
2015-32-0825
The effect of temporally-splitting high pressure injection on Diesel spray combustion and soot formation processes was studied by using the high-speed video camera. The spray was injected by the single-hole nozzle with a hole diameter of 0.11mm into the high-pressure and high-temperature constant volume vessel. The free spray and the spray impingement on the two dimensional (2D) piston cavity wall were examined. Injection pressures of 100 and 160 MPa for the single injection and 160 MPa for the split injection were selected. The flame structure and soot formation process were examined by using the two-color pyrometry. The soot generated in the flame under the split injection under 160 MPa becomes higher than that of the single injection under 160 MPa.
Technical Paper

Combustion Performance of Methane Fermentation Gas with Hydrogen Addition under Various Ignition Timings

2022-01-09
2022-32-0043
Hydrogen (H2) addition is widely used for natural gas combustion to improve the engine efficiency. However, less attention was paid on the various ignition timings for the maximum brake torque (MBT) and brake thermal efficiency (BTE). In order to check the ignition timing effect, experiments were performed in a spark ignition engine with engine speed fixed on 1500 revolutions per minute (rpm). Firstly, CH4 was only used for combustion with excess air ratio (λ) changing from 0.8 to 1.4. Then, co-combustion of 50 vol% CH4 and 50 vol% CO2 was checked to simulate methane fermentation gas. Finally, H2 was added with volume percentage varying from 5% to 20%. Among these discussions, torque, brake mean effective pressure (BMEP), BTE and cylinder pressure were evaluated. Based on the results, high efficiency can be achieved by advancing the ignition timing with H2 addition at λ=1.4. However, with H2 addition, the ignition timing should be retarded to obtain higher BTE.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Technical Paper

Effect of Cross-Flow Velocity on Fuel Adhesion of Flat-Wall Impinging Spray under Triple Stage Split Injection

2023-09-29
2023-32-0013
The high injection pressure and small cylinder volume of direct injection spark ignition (DISI) engines can result in flat-wall wetness on the surface of the piston, increasing fuel consumption and pollutant emissions. The characteristics of microscopic fuel adhesion are observed using refractive index matching (RIM). Fuel adhesion characteristics after wall impingement are evaluated with various cross-flow velocities under triple stage injection conditions. The results indicate that cross-flow has a beneficial effect on the diffusion of fuel spray. Average fuel adhesion thickness decreases with an increase in cross-flow velocities. Furthermore, cross-flow promotes the evaporation of fuel adhesion, which leads to a reduction in the fuel adhesion mass/mass ratio. The improvement of injection strategy has guidance on low-carbon future.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Technical Paper

Effects of Droplet Behaviors on Fuel Adhesion of Flat Wall Impinging Spray Injected by a DISI Injector

2019-09-09
2019-24-0034
Owing to the short impingement distance and high injection pressure, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. For better understanding of the mechanisms behind the spray-wall impingement, the fuel spray and adhesion on a flat wall using a mini-sac injector with a single-hole was examined. The microscopic characteristics of impinging spray were investigated through Particle Image Analysis (PIA). The droplet size and velocity were compared before impingement. The adhered fuel on the wall was measured by Refractive Index Matching (RIM). The fuel adhesion mass and area were discussed. Moreover, the relationships between droplets behaviors and fuel adhesion on the wall were discussed.
Technical Paper

Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray

2007-07-23
2007-01-1890
Experimental study has been carried out on the effects of the micro-hole nozzle injector and ultra-high injection pressure on the mixture properties of D.I. Diesel engine. A manually operated piston screw pump, High Pressure Generator, was used to obtain ultra-high injection pressures. Three kinds of injection pressures, 100MPa, 200MPa, and 300MPa, were applied to a specially designed injector. Four kinds of nozzle hole diameters, 0.16mm, 0.14mm, 0.10mm, and 0.08mm, were adopted in this study. The laser absorption-scattering (LAS) technique was used to analyze the equivalence ratio distributions, Sauter mean diameter, spray tip penetration length, and other spray characteristics. The analyses of the experimental results show that the micro-hole nozzle and ultra-high injection pressure are effective to increase the turbulent mixing rate and to form the uniform and lean fuel-air mixture.
Technical Paper

Effects of Mixture Heterogeneity on Flame Propagation in a Constant Volume Combustion Chamber

1997-10-01
972943
Although mixture formation is considered important in actual spark ignition engines, A full understanding of the combustion characteristics of a heterogeneous mixture has not yet been achieved. In this study, in order to clarify the effects of a heterogeneous concentration distribution of the fuel-air mixture on the flame propagation process, different degrees of heterogeneously distributed mixtures were created by the motion of a pair of perforated plates in a constant volume combustion chamber. The laser Rayleigh scattering method was applied for quantitative visualizations of these mixture distributions. To control the distribution of the mixture concentration and the turbulence intensity independently, the flow in the chamber and its turbulence intensity were also measured by a laser sheet method and the LDV technique.
Technical Paper

Effects of Nozzle Hole Diameter and Injection Pressure on Fuel Adhesion of Flat-Wall Impinging Spray

2019-12-19
2019-01-2246
In direct injection spark ignition (DISI) engine, it is difficult to avoid the spray impingement of fuel on the cylinder wall and piston head, which is a possible source of hydrocarbons and soot emission. The injector nozzle geometry and injection pressure are essential components for the spray atomization and mixture formation. For better understanding the effects of injector hole diameters and injection pressure, the fuel spray and adhesion on a flat wall by different mini-sac injectors with a single hole was examined in this study. A flat-wall made of quartz glass was used as the impingement plate. Refractive Index Matching (RIM) method was applied to measure the thickness of fuel adhesion on the wall. All the cases performed in constant high-pressure chamber were under high temperature condition considering the real gasoline engine condition. Time-resolved behaviors of the fuel adhesion as well as adhesion mass, area and thickness were discussed.
Technical Paper

Experimental Study on Diesel Spray Combustion and Wall Heat Transfer with Multiple Fuel Injection Strategies - Results of Rapid Compression and Expansion Machine Experiment

2023-10-24
2023-01-1843
The rapid compression expansion machine (RCEM) was used to investigate the temporal variations of the spray flame and wall heat flux in the diesel engine combustion process by using 120 MPa and 180 MPa common rail pressure. A stepped cavity was applied to investigate spray and flame behavior under the pilot, pre and main multiple injection strategy. Wall heat flux sensors were installed in the piston cavity and the cylinder side. The injector has 3 holes with the neighboring angle in the left direction and another 3 holes in the right direction to simulate the spray interaction in the 10-hole injector combustion system in the actual diesel engine. The spray and flame behavior were taken by a high-speed video camera with direct photograph. A two-color analysis was applied to investigate gas temperature and KL factor distribution. The effect of locations and common rail pressure on heat transfer was investigated.
Journal Article

Experimental Study on Mixture Formation and Ignition Processes of Spray Injected by Hole-Type Nozzle for DISI Engine

2011-11-08
2011-32-0523
The purpose of this study is to investigate the spray characteristics and ignition stability of gasoline sprays injected from a hole-type nozzle. Using a single-hole VCO (Valve-Covered-Orifice) nozzle, the spray characteristics were studied with LAS (Laser Absorption Scattering) technique, and then flame propagation and ignition stability were investigated inside a high temperature high pressure constant volume vessel using a high speed video camera. The spatial ignition stability of the spray at different locations was tested by adjusting the position of the electrodes. By adjusting the ignition timings, the stable ignition windows for 3 determined locations where the ignition stability was high at a fixed ignition timing were studied. The flame propagation process was examined using high speed shadowgraph method. Experimental results show that when the ignition points are located on the spray axis, the ignition probability is low.
Technical Paper

Flame Propagation Characteristics in a Heterogeneous Concentration Distribution of a Fuel-Air Mixture

1998-10-19
982563
An experimental study was conducted to investigate the flame propagation characteristics in the presence of a heterogeneous concentration distribution of a fuel-air mixture in order to provide fundamental knowledge of the effects of gaseous mixture concentration heterogeneity on the combustion process. Different propane-air mixture distributions were produced by the reciprocating movements of a pair of perforated plates in a constant volume combustion chamber. The mean equivalence ratio of the fuel-air mixture was varied from 0.7 on the lean side to 1.6 on the rich side, the turbulence intensity in the combustion chamber was also varied at levels of 0.185 m/s, 0.130 m/s, 0.100 m/s, and 0.0 m/s. By an independent control of the mixture distribution and the turbulence intensity in the combustion chamber, the flame structure and flame propagation speed at various heterogeneous levels of the mixture distribution were investigated in detail.
Technical Paper

Fuel Spray Trajectory and Dispersion in a D.I. Diesel Combustion Chamber

1989-02-01
890462
Experiments and modeling of the fuel spray trajectory and dispersion influenced by both a swirling gas flow and wall impingement were performed under simulated direct injection (D.I.) diesel engine conditions at a high pressure and high temperature. A spray was injected into the steady swirling gas flow and impinged on the simulated piston cavity wall in a constant-volume bomb. High-speed Schlieren photographs provided the informative data on the behavior of the spray vaporizing in such diesel-like circumstances. A simplified computational model was developed to describe the spray trajectory and the fuel vapor dispersion in the D.I. diesel combustion chamber. The model includes the effects of the breakup on the trajectory and the vaporization of the spray, and the effects of the swirling gas flow and the wall impingement on the dispersion of the fuel vapor.
Technical Paper

Ignition and Flame Propagation of Spray Compound Mixture

1993-10-01
932711
The ignition and flame propagation processes of a propane-air mixture compounded with a kerosene spray were investigated in order to allow a better understanding of the multi-phase combustion process of the spray compound mixture in a direct injection stratified charge (DISC) engine. The ignition probability and the flame propagation velocity, as functions of the overall equivalence ratio, fraction of propane in the fuel, ignition energy and the Sauter mean diameter of the spray, were measured under atmospheric conditions. The development of the flame kernel and the propagating flame were observed by a high-speed video camera combined with a schlieren system. Adding small amounts of the kerosene spray to the lean propane-air mixture improved the ignition probability. However, the ignition probability depended strongly on the Sauter mean diameter and the ignition energy. Replacing the propane with the kerosene spray in a rich propane-air mixture increased the flame propagation velocity.
Technical Paper

Influence of Mixture Stratification Patter non Combustion Characteristics in a Constant-Volume Combustion Chamber

1995-10-01
952412
A pancake-type constant-volume combustion chamber was used to investigate the combustion and NOx emission characteristics of propane-air and hydrogen-air mixtures under various charge stratification patterns, which were obtained by variations of the initial charge and injected mixture concentrations and the ignition spark timing. A planar laser-induced fluorescence from nitrogen dioxide as gas fuel tracer was applied to measure the mixture distribution in the test chamber. The second harmonic output of pulsed Nd; YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at low trace level.
X