Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Study of Fuel and EGR Stratification to Reduce Pressure-Rise Rates in a HCCI Engine

2013-10-15
2013-32-9070
Problem of HCCI combustion is knocking due to a steep heat release by the ignition that is occurred in each local area at the same time. It is considered that dispersion of auto-ignition timing at each local area in the combustion chamber is necessary to prevent this problem. One of technique of this solution is to make thermal stratification. It could be made by using two-stage ignition fuel, which has large heat release at low temperature reaction. Dispersion of fuel concentration leads to difference of temperature histories while combustion phasing is dispersed at each local area. Also, EGR gas stratification could make difference of temperature histories at each local area because of that of the characteristics. This study examines the effect of mixing stratification by stratifying the charge of fuel and CO2. A single-cylinder engine equipped with optical access was used in experiments, and numerical analysis was executed.
Technical Paper

A Study on Adaptability of Alternative Fuels for Lean Burn Two-Stroke ATAC Engine

1997-10-27
978472
ATAC is “bulk-like” and/or “non-propagating” combustion caused by compression autoignition of premixture, and it is stable even in the lean region. And ATAC engine is expected to be an engine using alternative fuels which are difficult to apply to usual engines because of their low cetane number. In this study, a two-stroke ATAC engine test was carried out to evaluate an adaptability of alternative fuels for lean burn. Methanol, ethanol, DME, methane and propane were used as the test fuels, and the influence of fuel characteristics on autoignition timing, combustion duration and autoignition temperature were investigated in the lean region. Using oxygenated fuels, the lean limit of ATAC operation region shifts to lean side. ATAC autoignition temperature is not depend on equivalence ratio, delivery ratio and engine speed, and it is only decided by the kind of fuel. The order of the ATAC autoignition temperature is methanol, ethanol, DME, gasoline from lower side.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

An Investigation of the Effects of Fuel Concentration Inhomogeneity on HCCI Combustion -Fuel Concentration of Pre-Mixture Using LIF measurement-

2015-09-01
2015-01-1788
HCCI (Homogeneous Charge Compression Ignition) engine has a problem which causes knocking when the maximum PRR (Pressure Rise Rate) reaches a certain level because it takes the form of combustion of simultaneous multi-point ignition by compression of the air-fuel pre-mixture. This study focused on stratified charge of fuel in combustion chamber. This method disperses the timing of local ignition. The distribution of fuel concentration is measured by using LIF (Laser Induced Fluorescence). As a result, the maximum PRR is reduced by stratified charge of fuel. In addition, it is confirmed that the dispersion of combustion timing depends on the dispersion of fuel concentration.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

An Investigation on the Auto-Ignition of Fuel-Air Mixture Induced by Release of Oil-Fuel Droplets from Cylinder-Liner Using Multi-Zone Model

2014-11-11
2014-32-0094
This study investigated effects of gas inhomogeneity induced by droplets of fuels and oils on the auto ignition timing and temperature in the direct-injection spark ignition (DISI) engine by means of detailed numerical calculation using multi zone model. Recent researchers pointed out that droplets are made of fuels and oils which mix on the cylinder liner and released from the cylinder liner [1]. During the compression stroke released droplets reach the auto ignition temperature before flame propagation induced by spark ignition. It is called Pre-ignition. In combustion chamber, there is inhomogeneity caused by temperature and mixture distribution. In this study, the effects of gas inhomogeneity produced by droplet on the auto ignition timing and temperature have been investigated using Multi-Zone model of CHEMKIN-PRO by changing initial temperature and initial equivalence ratio. Especially, the volume of first ignition zone is focused on.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

Analysis of the Effect of Eco-driving with Early Shift-up on Real-world Emission

2010-10-25
2010-01-2279
For the reduction of greenhouse gas emission in the transportation sector, various countermeasures against CO₂ emission have been taken. The eco-driving has been paid attention because of its immediate effect on the CO₂ reduction. Eco-driving is defined as a driving method with various driving techniques to save fuel economy. The eco-driving method has been promoted to the common drivers as well as the drivers of carriers. Additionally, there are many researches about improvement of fuel efficiency and CO₂ reduction. However, the eco-driving will have the reduction effect of CO₂ emission, the influence of the eco-driving on air pollutant emission such as NOx is not yet clear. In this study, the effect of the eco-driving on real-world emission has been analyzed using the diesel freight vehicle with the on-board measurement system.
Technical Paper

Basic Research on the Suitable Fuel for HCCI Engine From the Viewpoint of Chemical Reaction

2005-04-11
2005-01-0149
In this study, attention was paid to the method of mixing fuel to solve one of problems of the HCCI engine, which is the avoidance of knocking. The objectives of the work reported in this paper were to research the characteristics of HCCI combustion of the Methane/DME/air pre-mixture in the experiment and to check the oxidation reaction in two cases: when DME was used as an ignition accelerator for the Methane/air pre-picture, and when Hydrogen was used as ignition accelerator. Furthermore, from these results reference was made about basic specifications required fuel for an HCCI engine.
Technical Paper

Combustion Analysis of Methanol-Fueled Active Thermo-Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation

1994-03-01
940684
To analyze the combustion mechanism of the so-called Active Thermo-Atmosphere Combustion (ATAC) in a two-stroke S.I. engine, a measuring system to obtain images of radical luminescence in the combustion chamber was developed. The ATAC engine tested was equipped with a quartz windows as the cylinder head. The instantaneous luminescence from radical species was observed using an image intensifier with a single band pass filter for both conventional and ATAC operating conditions. At ATAC operation, emissions from OH radicals were observed before heat release began, and after that, emissions from CH were observed. It was found that the ignition was initiated over the entire area of the combustion chamber and “bulk-like” and/or “non propagating” combustion occurred during ATAC engine operation.
Technical Paper

Combustion Analysis of Natural Gas in a Four Stroke HCCI Engine Using Experiment and Elementary Reactions Calculation

2003-03-03
2003-01-1089
Homogeneous charge compression ignition (HCCI) is regarded as the next generation combustion regime in terms of high thermal efficiency and low emissions. It is difficult to control autoignition and combustion because they are controlled primarily by the chemical kinetics of air/fuel mixture. In this study, it was investigated the characteristics of autoignition and combustion of natural gas in a four-stroke HCCI engine using experiment and elementary reactions calculation. The influence of equivalence ratio, intake temperature, intake pressure and engine speed on autoignition timing, autoignition temperature, combustion duration and the emissions of THC, CO, CO2 were investigated. And also, to clarify the influence of n-butane on autoignition and combustion of natural gas, it was changed the blend ratio of n-butane from 0 mol% to 10 mol% in methane / n-butane / air mixtures.
Technical Paper

Effect of Temperature-Pressure Time History on Auto-Ignition Delay of Air-Fuel Mixture

2018-09-10
2018-01-1799
When the compression ratio of the spark ignition engine is set high as a method of improving the fuel efficiency of passenger cars, it is often combined with the direct fuel injection system for knock mitigation. In port injection, there are also situations where the fuel is guided into the cylinder while the vaporization is insufficient, especially at the cold start. If the fuel is introduced into the cylinder in a liquid state, the temperature in the cylinder will change due to sensible heat and latent heat of the fuel during vaporization. Further, if the fuel is unevenly distributed in the cylinder, the effect of the specific heat is added, and the local temperature difference is expanded through the compression process. In this research, an experiment was conducted using a rapid compression machine for the purpose of discussing the effect of the temperature-pressure time history of fuel on ignition delay time.
Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effects of High-Pressure Fuel Injection and a Micro-Hole Nozzle on Combustion in a Rapid Compression Machine

1997-02-24
970893
High pressure fuel injection and a micro-hole nozzle were used with a rapid compression machine to study soot and nitrogen oxide reduction by creating a uniform and lean fuel distribution in the combustion chamber. The rapid compression machine was optically accessible, which allowed high-speed photography and subsequent two-color flame temperature and soot concentration measurements to be made. In addition, band spectrum radical luminescence images were also observed.
Technical Paper

Experimental Study of Transient Gas Jet Impinging on a Wall

1990-02-01
900479
The process of forming mixtures of injected fuels and ambient air has significant effects on the ignition and combustion process in the direct injection engine. In these engines fuel is injected intermittently and fuel jet impinges on a combustion chamber wall. This study deals with a fundamental experiment on the mixing process of the transient gas jet together with the instantaneous concentration measurement and statistical analysis of the transient turbulent mixing process in the jet. Helium or carbon dioxide is injected at constant pressure into quiescent atmosphere through the single shot device. This paper presents a laboratory automation system for measuring the characteristics of transient gas jet and processing the data. A discussion on the process of mixture formation of transient gas jets impinging on a wall is carried out with time- and space- resolved concentration distribution.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

2000-06-19
2000-01-1815
Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

Numerical Assessment of Controlling the Interval between Two Heat-Release Peaks for Noise Reduction in Split-injection PCCI Combustion

2015-09-01
2015-01-1851
In PCCI combustion with multiple injections, the mechanism having two heat release peaks which has a favorable characteristic of reducing noise is studied using numerical tool of single- and also multi-zone model of CHEMKIN PRO. In the present investigation, the physical issues, such as variations in the equivalent ratio and temperature caused by the fuel injection are simplified first so that the key issues of chemical reaction occurred in the combustion chamber can be extracted and are discussed in detail. The results show that the interval of two heat-release peaks can be controlled and as the number of zones of the calculation increases, the change in the timing of a heat release peak is increased but over three-zones, it is not affected any more. This indicates that to study about complex diesel combustion phenomena, three-to four-zone model shall give sufficiently accurate results.
Technical Paper

Numerical Investigation of a Potential of Dedicated EGR System for Increasing Thermal Efficiency of SI Engines Fueled with Methane and Propane

2015-09-01
2015-01-1883
This study tried to find a potential of dedicated EGR (d-EGR) system added to the four-cylinder spark ignition (SI) engine to decrease heat loss (Qheatloss) and improve thermal efficiency (ηth). Test fuels were chosen by methane and propane. PREMIX code in CHEMKIN-PRO was employed to calculate laminar burning velocity (SL) and flame temperature (Tf). Wiebe function and Wocshni's heat transfer coefficient were considered to calculate ηth. The results show that the d-EGR system increased ηth and it was higher than that of stoichiometric combustion of conventional SI engines due to the low Tf and fast SL.
Technical Paper

The Effect of Fuel Composition on Ignition Delay and Knocking in Lean Burn SI Engine

2017-11-05
2017-32-0112
Super lean burn technology is conceived as one of methods for improving the thermal efficiency of SI engines[1][2]. For lean burn, reduction of heat loss and the due to decrease in flame temperature can be expected. However, as the premixed gas dilutes, the combustion speed decreases, so the combustion fluctuation between cycles increases. Also, to improve the thermal efficiency, the ignition timing is advanced to advance the combustion phase. However, when the combustion phase is excessively advanced, knocking occurs, which hinders the improvement of thermal efficiency. Knocking is a phenomenon in which unburned gas in a combustion chamber compressed by a piston and combustion gas suffer compression auto-ignition. It is necessary to avoid knocking because the amplitude of the large pressure wave may cause noise and damage to the engine. Also, knocking is not a steady phenomenon but a phenomenon that fluctuates from cycle to cycle.
Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
X