Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Advanced Safety Technology for Children and Young Adults: Trends and Future Challenges

2006-10-16
2006-21-0007
Data presented in this paper demonstrated that the landscape for child occupant protection - the children and their restraints, vehicles, and crashes - is changing rapidly. Children are not small adults but are rather rapidly growing, developing, and changing and so too are their restraint needs. The past several years witnessed a growing awareness of these biomechanical challenges with the emergence of increased use of size-appropriate restraints for children under age 9 years and differences in patterns of injury by age. Vehicles involved in crashes with children reflect the trend overall: less passenger vans and cars and more light trucks, the majority of which are equipped with second generation air bags. The majority of crashes occurred on roads with posted speed limits below 45 miles per hour. The age group of particular concern is the newly driving teenage years (16-19) in which the crash and fatality rates are the highest among all age groups.
Technical Paper

Assessment of a Three-Point Restraint System with a Pre-tensioned Lap Belt and an Inflatable, Force-Limited Shoulder Belt

2011-11-07
2011-22-0007
This study investigates the performance of a 3-point restraint system incorporating an inflatable shoulder belt with a nominal 2.5-kN load limiter and a non-inflatable lap belt with a pretensioner (the “Airbelt”). Frontal impacts with PMHS in a rear seat environment are presented and the Airbelt system is contrasted with an earlier 3-point system with inflatable lap and shoulder belts but no load-limiter or pretensioners, which was evaluated with human volunteers in the 1970s but not fully reported in the open literature (the “Inflataband”). Key differences between the systems include downward pelvic motion and torso recline with the Inflataband, while the pelvis moved almost horizontally and the torso pitched forward with the Airbelt. One result of these kinematic differences was an overall more biomechanically favorable restraint loading but greater maximum forward head excursion with the Airbelt.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 1: Development of an Experimental Model and Quantification of Structural Response to Dynamic Belt Loading

2006-11-06
2006-22-0001
The abdomen is the second most commonly injured region in children using adult seat belts, but engineers are limited in their efforts to design systems that mitigate these injuries since no current pediatric dummy has the capability to quantify injury risk from loading to the abdomen. This paper develops a porcine (sus scrofa domestica) model of the 6-year-old human's abdomen, and then defines the biomechanical response of this abdominal model. First, a detailed abdominal necropsy study was undertaken, which involved collecting a series of anthropometric measurements and organ masses on 25 swine, ranging in age from 14 to 429 days (4-101 kg mass). These were then compared to the corresponding human quantities to identify the best porcine representation of a 6-year-old human's abdomen. This was determined to be a pig of age 77 days, and whole-body mass of 21.4 kg.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Evaluation of Rotation Reduction Features in Infant and Extended-Use Convertible Child Restraint Systems during Frontal and Rear Impacts

2021-04-02
2020-22-0003
A correctly used child restraint system (CRS) is associated with a substantial reduction of injury and mortality risks in motor vehicle crashes and epidemiologic data suggests that toddlers are provided greater protection when restrained in a rearward-facing CRS compared to a forward-facing CRS. Some ‘extended-use’ European CRS models can accommodate children up to six years rearward-facing and have a support (load) leg and/or a pair of lower (Swedish) tethers to reduce rotation during frontal and rear impacts, respectively. Laboratory studies have found that a support leg reduces head and neck injury metrics of anthropomorphic test devices (ATDs) younger than three years in rearward-facing CRS models during frontal impacts.
Journal Article

Headform Impact Tests to Assess Energy Management of Seat Back Contact Points Associated with Head Injury for Pediatric Occupants

2012-04-16
2012-01-0561
Head injuries are the most common injuries sustained by children in motor vehicle crashes regardless of age, restraint and crash direction. Previous research identified the front seat back as relevant contact point associated with head injuries sustained by restrained rear seated child occupants. The objective of this study was to conduct a test series of headform impacts to seat backs to evaluate the energy management characteristics of relevant contact points for pediatric head injury. A total of eight seats were tested: two each of 2007 Ford Focus, Toyota Corolla, 2006 Volvo S40, and 2008 Volkswagen Golf. Five to six contact points were chosen for each unique seat model guided by contact locations determined from real world crashes. Each vehicle seat was rigidly mounted in the center track position with the seatback angle adjusted to 70 degrees above the horizontal.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Injury Causation Scenarios in Belt-Restrained Nearside Child Occupants

2007-10-29
2007-22-0013
Successful development of side impact safety systems for rear row child occupants requires an understanding of injury causation and mitigation. However, data to guide the design of such safety systems for seat belt-restrained occupants is limited to injury risk assessments. Thus, we sought to elucidate Injury Causation Scenarios (ICS's) in children restrained by seat belts in nearside impacts. Included in the study were 4 to 15 year old children, involved in a side impact, seated on the nearside in the rear rows, restrained by a seat belt alone (no booster seats or side airbags) and who received an AIS 2+ injury. A Contact Point Map summarized the vehicle components that contribute to the injuries. The majority of head and face contacts points were found horizontally within the rear half of the window, and vertically from the window sill to the center of the window, and were a result of contact with both interior structures and structures on the crash partner.
Technical Paper

Predictors of Pediatric Abdominal Injury Risk

2004-11-01
2004-22-0021
Although previous research has linked poor seat belt fit to abdominal organ injury for children, few have studied the pattern of pediatric abdominal injuries and its relationship to key characteristics beyond this primary association. In this study, data were obtained from a probability sample of 19,125 children, representing 243,540 children, under age 16 years who were enrolled in an on-going crash surveillance system which links insurance claims data to validated telephone survey and crash investigation data. The risk of AIS2+ abdominal injury was estimated for various crash, restraint, vehicle and child correlates and multivariate logistic regression was used to identify the relative importance of these predictors. Children 4–8 years of age were at the highest risk of abdominal injury: they were 24.5 times and 2.6 times more likely to sustain an AIS2+ abdominal injury than those 0–3 years and 9–15 years, respectively.
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
Technical Paper

Rear Seat Occupant Safety: Kinematics and Injury of PMHS Restrained by a Standard 3-Point Belt in Frontal Crashes

2008-11-03
2008-22-0012
Very little experimental research has focused on the kinematics, dynamics, and injuries of rear-seated occupants. This study seeks to develop a baseline response for rear-seated post mortem human surrogates (PMHS) in frontal crashes. Three PMHS sled tests were performed in a sled buck designed to represent the interior rear-seat compartment of a contemporary midsized sedan. All occupants were positioned in the right-rear passenger seat and subjected to simulated frontal crashes with an impact speed of 48 km/h. The subjects were restrained by a standard, rear seat, 3-point seat belt. The response of each subject was evaluated in terms of whole-body kinematics, dynamics, and injury. All the PMHS experienced excessive forward translation of the pelvis resulting in a backward rotation of the torso at the time of maximum forward excursion.
Technical Paper

The Effect of An Acoustic Startling Warning On Take-Over Reaction Time And Trunk Kinematics for Drivers in Autonomous Driving Scenarios

2020-03-31
2019-22-0022
The Acoustic Startling Pre-stimulus (ASPS, i.e. a loud sound preceding a physical perturbation) was previously found to accelerate action execution in simple flexion exercises. Therefore in this study we examined if ASPS can accelerate take-over reaction times in restrained teen and adult drivers who were asked to reach for the steering wheel while experiencing sled lateral perturbations simulating a vehicle swerve. Results showed that adult drivers lift their hands toward the steering wheel faster with the ASPS versus without (161 ± 23 ms vs 216 ± 27 ms, p<0.003). However this effect was not found in teens or in trials where the drivers were engaged in a secondary task. Adults also showed reduced lateral trunk displacement out of the seat belt with the ASPS. The ASPS could represent a novel warning that reduces take over time and out-of-position movements in critical autonomous driving scenarios.
Technical Paper

The Effect of Pretensioning and Age on Torso Rollout in Restrained Human Volunteers in Far-Side Lateral and Oblique Loading

2012-10-29
2012-22-0012
Far-side side impact loading of a seat belt restrained occupant has been shown to lead to torso slip out of the shoulder belt. A pretensioned seat belt may provide an effective countermeasure to torso rollout; however the effectiveness may vary with age due to increased flexibility of the pediatric spine compared to adults. To explore this effect, low-speed lateral (90°) and oblique (60°) sled tests were conducted using male human volunteers (20 subjects: 9-14 years old, 10 subjects: 18-30 years old), in which the crash pulse safety envelope was defined from an amusement park bumper-car impact. Each subject was restrained by a lap and shoulder belt system equipped with an electromechanical motorized seat belt retractor (EMSR) and photo-reflective targets were attached to a tight-fitting headpiece or adhered to the skin overlying key skeletal landmarks.
Technical Paper

The Utility of Hybrid III and THOR Chest Deflection for Discriminating Between Standard and Force-Limiting Belt Systems

2003-10-27
2003-22-0013
Recent field data studies have shown that force-limiting belt systems reduce the occurrence of thoracic injuries in frontal crashes relative to standard (not force-limiting) belt systems. Laboratory cadaver tests have also shown reductions in trauma, as well as in chest deflection, associated with a force-limiting belt. On the other hand, tests using anthropomorphic test devices (ATDs) have shown trends indicating increased, decreased, or unchanged chest deflection. This paper attempts to resolve previous experimental studies by comparing the anterior-posterior and lateral chest deflections measured by the THOR and Hybrid III (H-III) dummies over a range of experimental conditions. The analysis involves nineteen 48-km/h and 57-km/h sled tests utilizing force-limiting and standard seat belt systems, both with an air bag. Tests on both the driver side and the passenger side are considered.
Technical Paper

Upper Extremity Fractures in Restrained Children Exposed to Passenger Airbags

2003-03-03
2003-01-0507
Restrained children between the ages of 3 to 15 years in crashes were identified in an on-going crash surveillance system (1998-2002) which links insurance claims data to telephone survey and crash investigation data. The risk of upper extremity injury associated with airbag deployment was estimated and a series of cases was examined using in-depth crash investigation to identify the mechanisms of these injuries. This study found that 3.5% of children who were exposed to a passenger airbag (PAB) received an upper extremity fracture, making them 2.5 times as likely to sustain an upper extremity fracture than children in similar crashes who were not exposed to a PAB. Female children were 2.2 times as likely to receive an isolated upper extremity fracture when exposed to a PAB than male children. The incidence rate, gender difference, and injury mechanism in children all appear to be similar to those of adults.
Technical Paper

Whole-body Kinematic and Dynamic Response of Restrained PMHS in Frontal Sled Tests

2006-11-06
2006-22-0013
The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes.
X