Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Disciplined Approach to Minimize Rattle Issues in Automotive Glove Box Assembly

2018-06-13
2018-01-1481
Nowadays, perception of automotive quality plays a crucial role in customer decision of vehicle purchase. Hence, automotive OEM’s are now working on the philosophy of “Quality Sound”. Out of all the Noise, Vibration & Harshness (NVH) issues identified in a vehicle, the ranking of Buzz, Squeak & Rattle (BSR) stands high and glove box rattle is one of the issues that is continuously observed in all customer verbatim. Specific issues like lid rattle and latch rattle are predominant and gets worse over mileage accumulation. Also minimizing BSR issues in glove box is difficult due to complex latch mechanism. While deciding the bump stop specifications more weightage is given to efforts. The bump stop is selected in a way as not to increase the glove box opening and closing efforts, but the selected bump stops will not provide enough preload to glove box lid leading to rattle issues.
Technical Paper

A Study on Door Clips and Their Influence on BSR Performance

2019-06-05
2019-01-1468
Squeak and rattle concerns account for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises are one of the top 10 IQS concerns under any OEM nameplate. Door trim significantly contributes to overall BSR quality perception. Door trim is mounted on door in white using small plastic clips with variable properties that can significantly influence BSR performance. In this paper, the performance of various door clips is evaluated through objective parameters like interface dynamic stiffness and system damping. The methodology involves a simple dynamic system for the evaluation of the performance of a clip design. Transmissibility is calculated from the dynamic response of a mass supported by clip. Parameters such as interface stiffness and system damping are extracted for each clip design. Variation of inner panel thickness is also considered when comparing clip performance.
Technical Paper

Analysis and Elimination of Howling Noise in Compact Utility Vehicle

2017-07-10
2017-28-1922
NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
Technical Paper

Analysis and Reduction of Abnormal Suspension Noise in Sports Utility Vehicle

2024-01-16
2024-26-0217
This paper focuses on reducing abnormal noise originating from suspension when driving on rough road at the speed of 20 kmph. The test vehicle is a front wheel driven monocoque SUV powered by four cylinder engine. Cabin noise levels are higher between 100 to 800 Hz when driven on rough road at 20 kmph. Vibration levels are measured on front and rear suspension components, front and rear subframe, subframe connections on body to identify the noise source locations. Since the noise levels are dominant only in certain rough patches at very narrow band of time, wavelet analysis is used for identification of frequency at which the problem exist. Based on wavelet analysis, it is identified that the vibration levels are dominant on front lower control arm (LCA). The dynamic stiffness of LCA bushes is reduced by ~ 40% to improve the isolator performance which reduced the noise levels by ~ 9 dB (A) at the problematic frequency band.
Technical Paper

Analysis of Drive Line Vibration and Boom Noise in an All Wheel Drive Utility Vehicle

2014-04-01
2014-01-1975
The customer demand for all wheel drive (AWD) vehicles is increasing over the period of time which also requires NVH performance on par with front wheel drive vehicles. AWD vehicles are equipped with power transfer unit, propeller shaft and independent rear differential assembly to achieve their functional requirement. The additional drive train components in AWD vehicles may amplify torsional fluctuations in the drive line. Hence achieving the NVH performance of AWD vehicles on par with FWD vehicles without any major change in the existing design is a major challenge. In this work, an AWD vehicle with severe body vibration and booming noise is studied. The operational measurements are taken throughout the drive train on all sub-systems from engine to the rear part of the body in the problematic operating condition. An operational deflection shape analysis is conducted to visualize the vibration behavior of the drive train.
Technical Paper

Countermeasures for Low Frequency Boom Noise Reduction in Electric Vehicle

2024-01-16
2024-26-0214
Electric vehicles (EV) are much quieter than IC engine powered vehicles due to less mechanical components and absence of combustion. The lower cabin noise in electric vehicles make customers sensitive to even small noise disturbances in vehicle. Road boom noise is one of such major concerns to which the customers are sensitive in electric vehicles. The test vehicle is a front wheel driven compact SUV powered by electric motor. On normal plain road, noise levels are acceptable but when the vehicle has been driven on coarse road, the boom noise is perceived, and the levels are objectionable. Multi reference Transfer Path Analysis (MTPA) is conducted to identify the path through which maximum forces are entering the body. Based on MTPA, modifications are proposed on the suspension bushes and the noise levels were assessed.
Technical Paper

Driveline Vibration Reduction in Light Weight all Wheel Drive Vehicle

2024-01-16
2024-26-0229
The test vehicle is All Wheel Drive (AWD) vehicle which is powered by four-cylinder engine. The power is transferred from the powertrain to the wheel through power transfer unit (PTU), propeller shaft, flexible rubber coupling and Integrated Rear Differential Assembly (IRDA) . Higher boom noise and vibration levels are observed when driving the vehicle in 4th gear WOT conditions. NVH levels are dominant between 1150 rpm to 2100 rpm and at 2200 rpm in 2nd order and 4th order respectively. Operational deflection shape (ODS) analysis is carried out on entire vehicle to identify the location where maximum deflection is observed at the problematic frequency. It is identified that higher torsional excitation from the powertrain is exciting the IRDA pitching mode and the propeller shaft bending mode which is the reason for higher 2nd order and 4th order NVH levels. The driveline forces are entering the body through the IRDA and rear cradle bushes.
Technical Paper

Experimental Determination of Acoustic Cavity Resonances of Vehicle Sub-Systems

2014-04-01
2014-01-0015
The present quiet and comfortable automobiles are the result of years of research carried out by NVH engineers across the world. Extensive studies helped engineers to attenuate the noise generated by major sources such as engine, transmission, driveline and road excitations to a considerable extent, which made other noise sources such as intake, exhaust and tire perceivable inside. Many active and passive methods are available to reduce the effect of said noise sources, but enough care needs to be taken at the design level itself to eliminate the effect of cavity resonances. Experimental investigation of cavity resonances of real systems is necessary besides the FEA model based calculations. Acoustic cavity resonance of vehicle sub systems show their presence in the interior noise through structure borne and air borne excitations. Cavity resonances for some systems e.g. intake can only be suppressed through resonators.
Technical Paper

Experimental Investigation of Effect of Driveline Torsional Fluctuations on Overall NVH Performance of the Vehicle

2015-06-15
2015-01-2192
Meeting various customer(s) requirements with the given automotive product portfolio within the stipulated time period is a challenge. Design of product configuration matrix is an intelligent task and it requires information about vehicle performance for different configurations which helps in deciding the level of new development. Most often the situation arises, particularly in the field of NVH, to strike the right balance between engine power and structural parameters of the body. The sensitivity of engine power on the overall NVH behavior is the key information necessary to take major business decisions. In this paper, the effect of change in torsional fluctuation of the engine on the NVH behavior of the rear wheel drive vehicle is experimentally studied. The torsional fluctuation of the driveline is given as an input with the help of an electric motor to the existing test vehicle at its differential end and the current NVH levels are measured.
Technical Paper

HVAC NVH Refinement in Electric Vehicle

2024-01-16
2024-26-0206
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line.
Technical Paper

Identification of Swing Gate Seal Chucking using Predictive Methodologies and Test Correlation

2023-04-11
2023-01-0169
For decades, customer complaints on Squeak & Rattle issues have come as a question of quality for the automotive industry. Squeak and rattle sounds are customer irritants due to their non-patterned and transient nature. Squeak is a friction induced noise that generally occurs because of rubbing of the two materials that are incompatible with each other. While rattle is a phenomenon that occurs due to the impact between the two parts having unintended gap. They are no more secondary noises and avoiding or elimination of these become significant for brand building and warranty cost reduction. Chucking is a form of squeak noise that occurs due to the interaction between uncoated seal to seal. In Swing gate, this phenomenon is seen when seal bulb inner layers are completely compressed. Swing gate have fore-aft modes that are excited due to dynamic responses from different road profiles.
Technical Paper

Measurement Technique for Quantifying Structure Borne and Air Borne Noise Levels in Utility Vehicle

2014-04-01
2014-01-0003
Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation.
Technical Paper

NVH Refinement of Structure-Borne Tonal Noise in Electric Vehicle

2024-01-16
2024-26-0198
Globally all OEMs are moving towards electric vehicle to reduce emission and fuel cost. Customers expect highest level of refinement and sophistication in electric vehicle. At present, the customers are sensitive to high pitched tonal noise produced by electric powertrain which gives a lot of challenges to NVH engineers to arrive at a cost-effective solution in less span of time. Higher structure borne tonal noise is perceived in electric vehicle at the vehicle speeds of ~ 28 kmph, 45 kmph and 85 kmph. The test vehicle is front wheel drive compact SUV powered by motor in the front. The electric drive unit is connected to cradle and subframe with help of three mounts. Transfer path analysis (TPA) using blocked forces method is carried out to identify the exact forces of the electric drive unit entering the mounts. Powertrain mount is characterized by applying the predicted forces and dynamic stiffness at problematic frequency is measured.
Technical Paper

Reduction of Driveline Boom Noise and Vibration of 40 Seat Bus through Structural Optimization

2017-07-10
2017-28-1926
In today’s automotive scenario, noise vibration and harshness (NVH) has become a synonym for quality perception. This paper evaluates the problem of vibration and noise experienced in M2 category 40 seat bus and suggests the counter measures. Severe vibration is experienced on the bus floor, predominantly towards rear part of the bus. Vibration along with acoustic boom occurs prominently in 4th gear wide open throttle operating condition between 1300-1600 rpm of the engine. This paper focuses on reducing NVH levels by working on the transfer path with little modifications on power-train. Preliminary torsional measurements conducted on powertrain indicated high torsional excitation in the driveline during the problematic rpm zone. Further, Operational Deflection Shape (ODS) analysis revealed that the transfer path to the cabin is rear differential unit and suspension links. The dominant frequencies were identified along the transfer path and suitable modifications were done.
Technical Paper

Systematic Approach to Mitigate Urea Tank Sloshing Noise in Passenger Vehicles

2024-01-16
2024-26-0200
In the current era, vehicle manufacturers focus has increased towards passenger comfort and one of the key areas is NVH. Vehicle level NVH targets are cascaded to component level for obtaining better refinement in cabin. One such performance attribute is sloshing noise of urea in diesel vehicles. Migration from BS4 to BS6.2 norms demand complex technological changes to automobile manufacturers to add extra components to the vehicles which is a big challenge in identifying the locations at critical stage of the project phase. In one of the developments of mid SUV category vehicle, sloshing noise from urea tank is perceived as objectionable during low-speed braking and while passing over speed breakers. This paper addresses the measurement conditions of sloshing noise and its evaluation procedure to quantify the sloshing noise at vehicle level. The sloshing noise is perceived in the frequency band of 50 to 1000 Hz.
Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
X