Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

-Design and Control of Switching Synchronous Motor Dedicated to Electric Cars - Motorization

2017-04-11
2017-01-9625
In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
Technical Paper

01 CAE analysis of a CVT toothed belt

2002-10-29
2002-32-1770
This work deals with the CAE simulation of the behaviour of a belt employed in a CVT transmission of a large displacement scooter engine. Both FEM and MBS simulations were performed, in order to estimate the dynamic loads acting on the component and the stress state the belt is subject to. The MBS simulations were backed up by simple FEM tests performed in order to estimate the elastic properties of elementary portions of the belt. The MBS system comprised the belt and the two pulleys. As a result, the force components the pulleys exert on the belt were calculated. FEM non-linear analyses were performed in order to estimate the stress state the belt experiences. The belt's both manufacturing and working conditions were simulated.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
Technical Paper

14 Design and Analysis of Two Wheeler Engine Gearbox through Simulation to Reduce the Development Time and Cost

2002-10-29
2002-32-1783
An efficient design of the gearbox is crucial for the expected performance of the vehicle both in terms of life and NVH. This involves design and analysis of gears, shafts, bearings, gear layout and speed ratios. Conventionally gears, shafts and bearings are designed and analysed independently. When the design of these parts change, their effect on related parts is estimated separately, leading to loss of time. Alternately, an integrated approach through simulation is adopted for the new two wheeler's gearbox by modeling on Romax designer software, consisting of shafts, bearings and gears. For the target load cycle, gear and bearing lives, shaft deflections and stresses are estimated. While the targets for stresses, deflections and lives are set logically and with experience, these are also compared with those of reference vehicle by creating and analysing reference gearbox model.
Technical Paper

15 Years of Transfer Path Analysis VINS in the Vehicle NVH Development - Selected Results

2014-06-30
2014-01-2047
Transfer path analysis is a powerful tool to support the vehicle NVH development. On the one hand it is a fast method to gain an overview of the complex interplay in the vehicle noise generation process. On the other hand it can be used to identify critical noise paths and vehicle components responsible for specific noise phenomena. FEV has developed several tools, which are adapted to the considered noise phenomena: Powertrain induced interior noise and vibration is analyzed by VINS (Vehicle Interior Noise Simulation), which allows the deduction of improvement measures fast enough for application in the accelerated vehicle development process. Further on vehicle/powertrain combinations not realized in hardware can be evaluated by virtual installation of the powertrain in the vehicle, which is especially interesting in the context of engine downsizing from four to three or six to four cylinders.
Technical Paper

19 Separation of Combustion Noise using Transient Noise Generation Model

2002-10-29
2002-32-1788
In a running engine, various impacts are excitation sources for structural vibrations and engine noises. Engine noises are classified, depending on their excitation sources, into the combustion noise, the combustion induced mechanical noise and the mechanical noise. It is difficult to measure such noises separately because some impacts occur closely in time and space. In this paper, a transient noise generation model of an engine was proposed considering vibration and its damping of engine structure. The present model was verified through the single explosion excitation experiment for a stationary engine. Using the noise generation model, the combustion noise was separated from the total noise radiating from a running four-stroke gasoline engine for motorcycles. It was found that the combustion noise had larger power at lower frequencies than higher frequencies. However, its contribution to the total engine noise was relatively small.
Technical Paper

1983 Ranger Pickup

1981-11-01
811270
The Ford Ranger will be a domestically built, small pickup truck engineered to many design objectives typical of a fullsize pickup, yet with four cylinder engine fuel efficiency. Ranger is a full-function on-and-off road pickup truck with a uniquely smooth ride and a capacity to carry up to a 725.7 kg. (1600 lb.) payload. The truck features a three passenger body-on-frame cab and a double wall pickup box with provision for 1.2m × 2.4m (4 ft. × 8 ft.) sheets of construction material. Featured in this comprehensive paper are the engineering highlights and innovations contributing to the accomplishment of these Small Truck objectives.
Technical Paper

1989 Suzuki Sidekick/Geo Tracker Body structure Analysis

1989-11-01
892536
This paper presents a summary of body structural analysis applied to the 1989 Suzuki Sidekick/Geo Tracker at various stages of development and design. The structure analysis techniques were applied previously to rigidity, vibration, strength, crashworthiness and optimization. The studies confirm that the CAE technique for body structure analysis is more beneficial if it is utilized in the earlier structure development stages particularly for vibration and crashworthiness. Through the extensive use of the structural analysis technique in conjunction with the experiment, the design concept of the Sidekick/Tracker body has been optimized to a most extent.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

1998 POLARIS INDY TRAIL: An Entry by Minnesota State University, Mankato in the “Clean Snowmobile Challenge 2000”

2000-09-11
2000-01-2574
A student team from Minnesota State University, Mankato's Automotive Engineering Technology program entered the Clean Snowmobile Challenge 2000. A 1998 Polaris Indy Trail was converted to indirect fuel injection running on a computer controlled closed loop fuel system. Also chassis, exhaust, and hood design modifications were made. The snowmobile was designed to compete in eight events. These events included acceleration, emissions, hill climb, cold start, noise, fuel economy/range, handling/driveability, and static display. The snowmobile modifications involved every aspect of the snowmobile with special emphasis on emissions and noise. Laboratory testing led to the final design. This paper details the modifications and test results.
Technical Paper

1D Modeling of Thermal Expansion Valve for the Assessment of Refrigerant-Induced Noise

2016-04-05
2016-01-1295
Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
Technical Paper

1D-3D Coupled Analysis for Motor Thermal Management in an Electric Vehicle

2022-03-29
2022-01-0214
Motor thermal management of electric vehicles (EVs) is becoming more significant due to its close relations to vehicle aerodynamic performance and power consumption, while computer aided engineering (CAE) plays an important role in its development. A 1D-3D coupled model is established to characterize transient thermal performance of the motor in an electric vehicle on a high performance computer (HPC) platform. The 1D motor thermal management model is integrated with the 1D powertrain model, and a 3D thermal model is established for the motor, while online data exchange is realized between the 1D and 3D models. The 1D model gives boundaries such as inlet coolant temperature, mass flowrate and motor heat generation to the 3D model, while the 3D model gives back boundaries such as heat transfer to coolant simultaneously. Transient simulations are performed for the 140kph(20°C) driving cycle, and the model is calibrated with experimental data.
Journal Article

1D-3D Online Coupled Transient Analysis for Powertrain-Control Integrated Thermal Management in an Electric Vehicle

2021-04-06
2021-01-0237
Thermal management in electric vehicles (EVs) has attracted more attention due to its increasing significance, and computer aided engineering (CAE) plays an important role in its development. A 1D-3D online coupling approach is proposed to completely characterize transient thermal performance of an electric vehicle on a high performance computer (HPC) platform. The 1D thermal management model, consisting of air conditioning, motor cooling and battery cooling systems, is integrated with the 1D control strategy model and powertrain model consisting of motor, battery, driver and vehicle models. The 3D model is established for the air flow around the full vehicle and through its underhood. The 3D model gives boundaries such as heat exchanger air flowrates and heat flows on some component surfaces to the 1D model, while 1D gives back boundaries such as heat exchanger heat loads, component surface temperatures and fan speed simultaneously.
Technical Paper

1st Order Boom Noise Relationship to Driveline Imbalance

2005-05-16
2005-01-2299
Two vehicle level test methods were developed that illustrate the relationship between 1st order noise in a cabin, and driveline imbalance contributors. At the launch of a new 2005 4WD sport utility vehicle program, a significant boom noise complaint was observed on many vehicles between 55-70 mph. The full time, electronic actively controlled, torque biasing transfercase was intensely reviewed as a potential source of excessive torque induced imbalance. Testing of the transfercase was performed on imbalance measurement stands, dynamometers, and in the vehicle. The result was the identification of two issues. First was that two internal to the transfercase parts were found to have excessive runout. Second was that there was a lack of vehicle correlation to transfercase imbalance. An extensive effort involving over 50 vehicles of the same model was pursued to find the source of the problem.
Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
CURRENT
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
HISTORICAL
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Technical Paper

2-Door Vehicle Body Local Force Evaluation with the IIHS, EuroNCAP, and LINCAP Side Impact Barriers

2004-03-08
2004-01-0333
Structure enhancement based on data monitored in a traditional side impact evaluation is primarily a trial and error exercise resulting in a large number of computer runs. This is because how the structure gets loaded and the degree of contribution of local structural components to resist the impact while absorbing energy during a side collision is not completely known. Developing real time complete load profiles on a body side during the time span of an impact is not an easy task and these loads cannot be calculated from that calculated at the barrier mounting plate. This paper highlights the load distribution, calculated by a procedure using computer aided engineering (CAE) tools, on a typical 2-door vehicle body side when struck by moving deformable barriers used in the insurance institute for highway safety (IIHS), EuroNCAP and LINCAP side impact evaluations.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

2002-10-29
2002-32-1789
The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

2001-04-30
2001-01-1609
This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
X