Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Cooling Water Temperature on Particulate Emissions from a Small High Speed DI Diesel Engine

1991-02-01
910740
Authors have experimented the effects of cooling water temperature on the particulate emission characteristics from a high speed DI diesel engines. A single cylinder small high speed DI diesel engine is operated under various engine speed and load conditions. Cooling water temperature is varied from 313 K (40 °C) to 363 K (90 °C). Particulate is collected using a single stage full size dilution tunnel. Dry soot and SOF emissions are measured, as well as total particulate. SOF increases when the cooling water temperature decreases, as well as HC increases. SOF also increases as load decreases. This suggests that the SOF emits at the cold starting and warming up periods. This also suggests that the SOF can be reduced by increasing cooling water temperature. IT IS IMPORTANT TO CLARIFY the effects of cooling water temperature on the particulate emission.
Technical Paper

Particulate Emission Characteristics from an Impingement Diffusion Direct Injection Diesel Engine

1994-10-01
942047
A new mixture formation and combustion process for reducing both emissions and fuel consumption has been developed, where the fuel impinges onto the impinging surface and spreads into the free space, named the OSKA process. A single cylinder engine particulate emission test was conducted with full flow dilution tunnel. The OSKA process shows lower TPM (total particulate matter) emission than the conventional DI diesel at the corresponding operating condition. ISF(insoluble fractions) and SOF(soluble organic fraction) are lower than DI diesel's. Correlation between SOF and THC of OSKA engine is, however different from that of conventional DI diesel. OSKA emits lower THC than conventional DI diesel does at the same SOF emission. This is because the wall quenching effect is smaller in OSKA than in conventional DI diesel. A NEW MIXTURE FORMATION and combustion technology, impinging diffusion one named OSKA, has been developed by the authors.
Technical Paper

Wall Effects on SOF Formation

1992-10-01
922211
Wall quenching plays a vital role on particulate formation. A single cylinder engine test has been carried out to clarify the effects of wall quenching on particulate emission. A completely warmed up engine is fired in variety of operating period under various engine load, and then stopped immediately. Deposits are collected from 25 positions on the combustion chamber wall. Area basis concentration of deposit is obtained at each position. Soluble organic fractions (SOF) extracted from deposit are analyzed with gel permeation chromatograph (GPC). Results show the correlation between SOF in exhaust particulate and in deposit. Deposit concentration is highest on the spray axis impinging region of piston cavity wall. GPC pattern of the SOF in deposit indicates that higher molecular weight composition generates as a result of polymerization of fuel where the main jet region of the spray impinges.
X