Refine Your Search

Topic

Search Results

Standard

Application Guideline for Use of Hydrogen Quality Specification

2022-11-02
CURRENT
J2719/1_202211
This SAE Information Report is intended to be used for routine (or periodic) monitoring of filling station performance. It is not intended to provide process quality control requirements for any portion of the product delivery cycle.
Standard

Characterization of On-Board Vehicular Hydrogen Sensors

2018-10-09
CURRENT
J3089_201810
This SAE Technical Information Report (TIR) provides test methods for evaluating hydrogen sensors when the hydrogen system integrator and/or vehicle manufacturer elect to use such devices on board their hydrogen vehicles, including hydrogen fuel cell electric vehicles (FCEV). The tests described in 5.1 of this document are performance-based and were developed to assess hydrogen sensor metrological parameters. These tests were designed to accommodate a wide range of environmental and operating conditions based on different possible situations and sensor implementations within the vehicle. Section 5.2 covers supplemental electrical safety and physical stress tests. These are based upon standard tests developed for qualifying electrical and other components for use on vehicles and do not explicitly pertain to gas sensor metrological performance assessment.
Standard

Compressed Hydrogen Surface Vehicle Fueling Connection Devices

2017-09-28
WIP
J2600
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70. 1.1 Purpose SAE J2600 is intended to: • Prevent vehicles from being fueled with a Pressure Class greater than the vehicle Pressure Class; • Allow vehicles to be fueled with Pressure Class equal to or less than the vehicle Pressure Class, • Prevent vehicles from being fueled by other compressed gases dispensing stations; • Prevent other gaseous fueled vehicles from being fueled by hydrogen dispensing stations.
Standard

Compressed Hydrogen Surface Vehicle Fueling Connection Devices

2012-11-19
HISTORICAL
J2600_201211
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70.
Standard

Compressed Hydrogen Surface Vehicle Fueling Connection Devices

2015-10-21
CURRENT
J2600_201510
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2014-07-15
HISTORICAL
J2601_201407
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including fuel temperature, the maximum fuel flow rate, and rate of pressure increase and end pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601-2014 establishes standard fueling protocols based on a look-up table approach with performance targets. The current standard is table-based and provides concise performance targets for both communications and non-communications fueling as described in Sections 7 through 10. An important factor in the performance of hydrogen fueling is the station’s dispensing equipment cooling capability and the resultant fuel delivery temperature “T” rating. SAE J2601 has a reference fueling target of 3 minutes with 95-100% SOC (with communications) with a T40 rated dispenser as specified in section 6.1.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2016-12-06
HISTORICAL
J2601_201612
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles*

2010-03-16
HISTORICAL
J2601_201003
SAE TIR J2601 establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers. The criteria include maximum fuel temperature at the dispenser nozzle, the maximum fuel flow rate, the maximum rate of pressure increase and other performance criteria based on the cooling capability of the station’s dispenser. This document establishes fueling guidelines for “non-communication fueling” in the absence of vehicle communication and guidelines for “communication fueling” when specified information is transmitted from the vehicle and verified at the dispenser. The process by which fueling is optimized using vehicle-transmitted information is specified. This document provides details of the communication data transmission protocol. The mechanical connector geometry is not covered in this document. SAE J2600 defines the connector requirements for fueling vehicles operating with a nominal working pressure of 35 MPa.
Standard

Gaseous Hydrogen and Fuel Cell Vehicle First and Second Responder Recommended Practice

2016-06-03
CURRENT
J2990/1_201606
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

Gaseous Hydrogen and Fuel Cell Vehicle First and Second Responder Recommended Practice

2019-12-02
WIP
J2990/1
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

Hydrogen Fuel Quality for Fuel Cell Vehicles

2011-09-20
HISTORICAL
J2719_201109
This Standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
Standard

Hydrogen Fuel Quality for Fuel Cell Vehicles

2015-11-11
HISTORICAL
J2719_201511
This Standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
Standard

Hydrogen Fuel Quality for Fuel Cell Vehicles

2020-03-18
CURRENT
J2719_202003
This standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
Standard

Hydrogen Surface Vehicle to Station Communications Hardware and Software

2014-04-09
HISTORICAL
J2799_201404
This standard specifies the communications hardware and software requirements for fueling Hydrogen Surface Vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate, with heavy duty vehicles (e.g., busses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces. This standard is intended to be used in conjunction with the hydrogen fueling protocol, SAE J2601, Compressed Hydrogen Light Duty Vehicle Fueling Protocol and SAE J2600, Compressed Hydrogen Surface Vehicle Fueling Connection Devices.
Standard

Information Report on the Development of a Hydrogen Quality Guideline for Fuel Cell Vehicles

2008-04-18
HISTORICAL
J2719_200804
This Information Report provides interim background information and an interim specification of hydrogen fuel quality for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this interim specification was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee. The constituents and thresholds listed in Table 1 are based on a survey of the industry, the published literature and reflects current and draft analytical test methods. Some of the allowable constituent levels are higher than desired because a published detection method is not available for the desired threshold. Some of the allowable constituent levels may be lower than desired due to incomplete evaluations and/or an attempt to minimize testing costs (such as including methane in total hydrocarbons).
Standard

Information Report on the Development of a Hydrogen Quality Guideline for Fuel Cell Vehicles

2005-11-10
HISTORICAL
J2719_200511
This Information Report provides interim background information and an interim specification of hydrogen fuel quality for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this interim specification was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee. The constituents and thresholds listed in table 1 are based on a survey of the industry, the published literature and reflects current and draft analytical test methods. Some of the allowable constituent levels are higher than desired because a published detection method is not available for the desired threshold. Some of the allowable constituent levels may be lower than desired due to incomplete evaluations and/or an attempt to minimize testing costs (such as including methane in total hydrocarbons).
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2014-08-26
HISTORICAL
J2578_201408
This SAE Recommended Practice identifies and defines requirements relating to the safe integration of the fuel cell system, the hydrogen fuel storage and handling systems (as defined and specified in SAE J2579) and high voltage electrical systems into the overall Fuel Cell Vehicle. The document may also be applied to hydrogen vehicles with internal combustion engines. This document relates to the overall design, construction, operation and maintenance of fuel cell vehicles.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2014-10-16
HISTORICAL
J2572_201410
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2024-02-06
CURRENT
J2572_202402
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fuelled by Compressed Gaseous Hydrogen

2006-08-21
HISTORICAL
J2572_200608
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
X