Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

An Assessment of Predictivity of CFD Computations of Combustion and Pollutants Formation in D.I. Diesel Engines

1996-10-01
962055
In the present paper the status of development of diesel combustion and pollutants formation modelling at Diesel Engines and Fuels Research Division of Istituto Motori is pointed out. The main features and performances of the model are discussed comparing the numerical results with some experimental data. For the experiments a single cylinder direct injection diesel engine was used. In the head of the engine two small quartz windows have been mounted, in order to obtain pictures of the injection and combustion processes by high speed cinematography, and to apply the two colour technique for soot temperature and soot loading measurements. The soot loading was measured by the two colour technique and the a priori and the experimental uncertainties of the measurement technique were carefully evaluated. In addition, the engine may be also equipped with a second head, in which a fast acting valve allows the direct sampling of the combustion products.
Technical Paper

Characterization of the sooting tendency of diesel fuels by shock tube and engine experiments

2001-09-23
2001-24-0040
The sooting tendency of a diesel fuels matrix has been investigated in a single-cylinder DI engine and in a shock tube. Soot loading in the optically accessible was inferred using two-color pyrometry. The engine was operated at 1250 rpm and 5 bar imep. Shock tube tests were performed in pure pyrolysis conditions; in the temperature and pressure range 1600-2400 K and 7-13 bar, respectively. The soot formation process was followed by means of light extinction methods. A thorough analysis of the results provided meaningful indications of fuels' ""performances,"" allowing to assess the effect of the fuel's composition (aromatics contents, cetane number, oxygen contents) on its sooting tendency.
Technical Paper

Combustion Behavior Analysis in a Transparent Research Engine Equipped with a Common Rail Diesel Injection System

2000-06-19
2000-01-1825
This paper describes a preliminary characterization of in-cylinder spray and combustion behavior from a high-pressure common rail injection system. The engine used in the tests was a single-cylinder optical research diesel engine, adequately developed in a full-fired version, equipped with a common rail injection system. An elongated piston allows for the optical access to the combustion chamber for diagnostic applications. Characteristic of the optical engine is the availability to investigate different combustion system designs due to an interchangeable head-cylinder group. The system configuration tested in the present work corresponds to a four-cylinder engine of 1930 cc of displacement that is representative in the class of light duty d.i. diesel engine. Spray and combustion evolutions were visualized through a high-speed CCD camera synchronized with a copper vapor laser acting as light source.
Technical Paper

Combustion Process Management in Common Rail DI Diesel Engines by Multiple Injection

2001-09-23
2001-24-0007
The improvements of the solenoid injector and of the Electronic Control Unit of the present Common Rail injection system (C.R.) allow the use of multiple sequential injections. Thanks to this feature this advanced Common Rail system is capable to perform up to five consecutive injections in one engine cycle thus improving control of the combustion process. In particular, in some operating conditions, the activation of a small injection after the main one allows the oxidation of the soot produced in the previous stages of the combustion process, without increasing nitrogen oxide emissions. This paper describes the experimental results obtained with the application of a prototype of this advanced Common Rail system both to a Fiat L4 1.9 JTD 8 valve engine and to a single-cylinder prototype, having the same combustion system and large optical access allowing investigation of the injection and combustion processes.
Technical Paper

Diesel Combustion Improvements by the Use of Oxygenated Synthetic Fuels

1997-10-01
972972
In this paper results on in-cylinder pollutant concentration evolution during combustion of six different oxygenated fuels, in comparison with tetradecane and n-octane combustion, are presented. These four fuels are: Ethylene-Glygol-Dimethylether (monoglyme-C4H10O2), Diethylene-Glygol-Dimethylether (diglyme-C6H14O2), Diethylene-Glycol-Diethylether (diethyldiglycol-C8H18O3), butylether (C8H18O). Two techniques were adopted on a single cylinder direct injection diesel engine: two-color pyrometry for the measurement of in-cylinder soot loading and a fast sampling valve for the measurements of in-cylinder combustion products. In addition, the sampling line downstream of the fast sampling valve was adapted for the in-cylinder aldehyde measurements. The main results obtained provide information about the mechanisms that control soot evolution during diesel combustion.
Technical Paper

Dynamic Testing of Light Duty Diesel Engine: Characterization of Combustion Parameters Evolution

1991-09-01
911843
A methodological analysis of combustion parameters and pollutant emissions measuring procedures during transient operation of a D.I. T.C. light duty diesel engine was performed. Combustion process was characterized by ignition delay time, combustion pressure peak value and heat release law measurements during the transient ECE 15 schedule on a dynamic test bed with electronic simulation of inertia. The particulate emission was measured every 0.05 s by an I.R. optical method. In addition some correlations, based on pressure cycle and injection law evolution, were implemented in order to calculate instantaneous fuel delivery and transient NOx emission. Some activities were carried out in order to asses the limits of engine configurations ranking performed with steady state measurements of performances and emissions. Strong differences were detected between carbon emission during transient operations and the value obtained by interpolation from a steady state map.
Technical Paper

Effect of Combustion Chamber Shape on Air Flow Field in a D.I. Diesel Engine

1987-02-01
870338
The behaviour of two combustion chambers, a toroidal and a turbulent one, has been compared. The engine performance in terms of imep and exhaust emissions were measured. Laser Doppler Anemometry technique was used to characterize the fluids dynamic aspect of combustion system. The axial asymmetry introduced in combustion chamber shape causes strong differences in the air flow field at the end of compression stroke. The tangential velocity profile is flattened to that obtained with toroidal chamber. Moreover the rms values of tangential velocity measured in turbulent combustion chamber are about three times higher than that measured in the toroidal chamber. At low engine speed the turbulent chamber allows to operate with low NOx levels without penalties of smoke emissions and fuel consumption as happens by using conventional toroidal chamber.
Technical Paper

Experimental Investigation on High-Quality Diesel Fuels Effects in a Light Duty CR Diesel Engine

2000-06-19
2000-01-1911
In this paper some preliminary results on the emission performance of a modern CR DI diesel engine running on reformulated diesel fuels are discussed. The engine employed in the tests was a Fiat M724 1910cc, installed on Alfa Romeo 156 1.9 JTD. Modern injection systems can modify the spray structure with respect to a spray of a classical rotary injection pump so the well-consolidated knowledge on the correlation between fuel parameters and pollutant emissions may not be valid for the new generation of DI diesel engines. Two high quality fossil fuels and a synthetic fuel were selected for the tests. Tests were directed to analyze the relative influence on exhaust emissions between injection parameters and fuel quality. One engine test point (2000 rpm × 2 bar of b.m.e.p.) was chosen, with different setting of injection pressure, EGR ratio and pilot injection activation.
Technical Paper

In-Cylinder Sampling of High Molecular weight Hydrocarbons From a D.I. Light Duty Diesel Engine

1989-02-01
890437
The formation and oxidation of soot, light and heavy hydrocarbons, CO, CO2 and NOx in a D.I. diesel engine have been studied by means of direct fast sampling and chemical analysis of the combustion products collected during the combustion cycle. Particular attention has been paid to the histories of each fuel hydrocarbon class analyzing the chemical transformations that the paraffins, and monoaromatic and polyaromatic compounds, contained in a diesel fuel oil, undergo during the combustion cycle. This approach is able to give information on the origin of soot and heavy hydrocarbon emission from a diesel engine. The concentration of the heavy hydrocarbons decreases during the early stages of the combustion cycle and their profile corresponds roughly to the fuel disappearance rate because of the chemical similarity with the fuel compounds.
Technical Paper

In-Cylinder Soot and NOx Concentration Measurements in D.I. Diesel Engine Fed by Fuels of Varying Quality

1996-02-01
960832
Selected measurements of the in-cylinder soot loading and the gaseous combustion products for ten different innovative fuels, burned in a D.I. diesel engine are presented and discussed. All the fuels which were tested have a very low sulfur content, so the insoluble fraction of the particulate is mainly composed of soot. Two different measure techniques are applied: the two-color pyrometry optical method and the fast sampling of gaseous products in the combustion chamber. A priori and experimental uncertainties relative to the reduction of the data obtained with the two-color measurements are preliminarily investigated.
Technical Paper

In-cylinder Soot Evolution Analysis in a Transparent Research DI Diesel Engine Fed by Oxygenated Fuels

2002-10-21
2002-01-2851
This paper describes a characterisation of the combustion behaviour in an optical Common Rail diesel engine fed by different advanced fuels, via the application of the two-colour pyrometry technique. The acquired images were processed in order to calculate the instantaneous flame temperature and soot volume fraction. For the measurements, a single test point was chosen as representative of the reference four-cylinder engine performance in the European driven cycle ECE+EUDC. The test point was the 1500 rpm and 22 mm3/stroke of injected fuel volume, correspondent to the engine point of 1500rpm @ 5 bar of BMEP for the 4-cylinder engine of 1.9L of displacement. As general overview, the flame luminosity from combustion of the fuel injected during pilot injection was always below the threshold of sensitivity of the detection system.
Technical Paper

Initial Results on the Impact of Automotive Diesel Oil on Unregulated Emissions of DI Light Diesel Engine

1992-10-01
922189
Cetane number, sulphur content and aromatic structure of Automotive Diesel Oil (ADO) were changed to assess their influence on emissions of light duty direct injection Diesel engine. The detailed chemical analysis of particulate soluble fraction allows to quantify the P.A.Hs emission. In addition also the aldehydes and volatile organic compounds were measured in the gaseous phase. The sulphur content of the fuel and its aromatic structure strongly influence particulate emission. The insoluble fraction of the particulate rises with an increase of the high sulphur content ADOs with about the same back end volatility. Unburned P.A.Hs control P.A.Hs emission at the part loads typical of normalized schedules for emission testing of light duty vehicles in Europe. Finally the level of emissions of benzene and 1-3 butadiene is comparable to the total P.A.Hs emission.
Technical Paper

Laser Diagnostic of Particles Exhaust Emission from Advanced Diesel Combustion Systems

2005-04-11
2005-01-0188
The effect of fuel injection strategy and charge dilution on NOx and soot emissions has been investigated with a modern DI diesel engine. Particulate mass has been measured by a standard smoke meter and soot particles have been characterized by means of time-resolved Laser Induced Incandescence (LII) at the exhaust of the engine. Two steady-state test points have been selected, representative of low and medium load conditions. The influence of the different engine management strategies has been assessed, highlighting the potential of unconventional operating modes to meet forthcoming emission limits.
Technical Paper

Potentiality of Oxygenated Synthetic Fuel and Reformulated Fuel on Emissions from a Modern DI Diesel Engine

1999-10-25
1999-01-3595
This paper presents the performances of a modern DI diesel engine, equipped with a Common Rail injection system, fed on blends of an advanced diesel fuel (base fuel) and Diethylene-Glycol-Dimethyl-Ether (Diglyme - C6H14O3). The base fuel was a reformulated diesel fuel with low aromatic and sulfur content. Three blends with different volumetric percentage of Diglyme (10, 20 and 30%) in the base fuel were prepared and tested. The engine was a FIAT M724, installed in a Alfa Romeo 156 1.9 JTD, with a Bosch Common Rail injection system (EDC-15C). At the exhaust of the engine, soot, NOx, HC, CO, and CO2 were measured. The experiments represent the potential of diesel reformulation technology with synthetic fuels coupled with the new diesel technology generation.
Technical Paper

Potentiality of the Modern Engines Fed by New Diesel Fuels to Approach the Future European Emission Limits

2002-10-21
2002-01-2826
This paper reports some results on the performance of an advanced common rail (CR) DI diesel engine burning 12 model diesel fuels. The experiments were carried out within a co-operative research program “NeDeNeF” (New Diesel Engines and New Diesel Fuels), partly sponsored by the Commission of European Communities. Partners of the project with Istituto Motori (IM) were: FEV (Germany), VTT (Finland), NTUA (Greece), Brunel University (UK), Fortum (Finland), LAT (Greece) under the coordination of the IFP (France). The matrix of twelve fuels was prepared by the fuel producer partner (Fortum). The research program of the Diesel Engines and Fuels Department of Istituto Motori aimed at assessing the effect of fuel quality on exhaust emissions. The engine employed in the tests was a Fiat four-cylinder DI CR diesel engine, EURO3 version, of 1.9 litre, installed on Fiat Group class C Cars (1350kg of mass).
Technical Paper

Soot Formation and Oxidation in a DI Diesel Engine: A Comparison Between Measurements and Three Dimensional Computations

1993-10-01
932658
Three dimensional computations of Diesel combustion were performed using a modified version of Kiva II code. The autoignition and combustion model were tuned on a set of experimental conditions, changing the engine design, the operating conditions and the fuel characteristics. The sensitivity of the model to the different test cases is acceptable and the experimental trends are well reproduced. In addition the peak of pressure and temperature computed by the code are quite close to the experimental values, as well as the pressure derivatives. Once tuned the combustion model constants, different but simple formulations for the soot formation and oxidation processes were implemented in the code and compared with the experimental measurements obtained both with fast sampling technique and two colors method. These formulations were found unable to give good prediction in a large range of engine operating conditions, even if the model tuning may be very good for each test point.
Technical Paper

The Influence of Fuel Composition on Particulate Emissions of DI Diesel Engines

1993-10-01
932733
The effect of different fuel parameters on emissions is difficult to understand, the response depending upon different engine technologies. In addition the isolation of some of the fuel variables is often very hard. The present paper discusses the main results obtained testing a matrix of 14 fuels designed for obtain large variations of cetane number, sulphur and aromatic contents of Diesel oil. The aromatic structure of fuels and its effect on particulate emissions was also investigated. A linear regression analysis was performed in order to isolate the main controlling factors on particulate emissions. Finally the influence of aromatic contents of fuel on unregulated emissions was also assessed.
Technical Paper

The Role Of Mean Motion and Turbulence structure on Gaseous and Particulate Emissions of D. I. Diesel Combustion System

1989-02-01
890839
The status of the research carried out at the Istituto Motori aimed to optimize the direct injection light duty combustion system with regard to pollutant emissions is described. The influence of combustion chamber design on air flow field was investigated by means of a two colors LDA system as well as by engine test bed. Three-dimensional computer simulations of injection and in- cylinder air motion have been run in order to analyze some experimental results. In particular two configurations of axisymmetric combustion chambers were examined and, results were compared with those obtained from a four-lobe microturbulence combustion chamber. Tests showed that some improvement in the NOx-particulate trade off can be obtained at part load at both high and low speeds.
Technical Paper

Thermal Barriers Adoption in D.I. Diesel Engines: Effect on Smoke and Gaseous Emissions

1984-08-01
840995
The paper describes some experiments carried out on two d.i. Diesel engines running with insulated pistons. Three different thermal barriers were tested; namely, a stainless steel cup, a Si3N4 cup and a stainless steel piston crown. The combustion process was characterized by heat release calculation and ignition delay measurements. The experiments showed that the indicated efficiency is not affected by thermal insulation adoption, Nox level increases while smoke level decreases consistently.
X