Refine Your Search

Topic

Search Results

Technical Paper

A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames

2016-04-05
2016-01-0574
The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively. Based on the soot reduction effects proposed in literature, effects on temperature, key radical concentrations and the carbon removal from the pathway to aromatic species were considered to identify the major mechanism of reduction in aromatic species.
Technical Paper

A Preliminary Investigation of the Performance and Emissions of a Port-Fuel Injected SI Engine Fueled with Acetone-Butanol-Ethanol (ABE) and Gasoline

2014-04-01
2014-01-1459
Alcohols, because of their potential to be produced from renewable sources and their characteristics suitable for clean combustion, are considered potential fuels which can be blended with fossil-based gasoline for use in internal combustion engines. As such, n-butanol has received a lot of attention in this regard and has shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. Acetone-Butanol-Ethanol (ABE) fermentation is one of the major methods to produce bio-butanol. The goal of this study is to investigate the combustion characteristics of the intermediate product in butanol production, namely ABE, and hence evaluate its potential as an alternative fuel. Acetone, n-butanol and ethanol were blended in a 3:6:1 volume ratio and then splash blended with pure ethanol-free gasoline with volumetric ratios of 0%, 20%, 40% to create various fuel blends.
Technical Paper

An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber

2014-04-01
2014-01-1452
Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuel which typically emit less pollutants compared to conventional diesel, but also lowers the cost of fuel recovery for each individual component during the fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly. ABE fuels with different component ratio, (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %), were blended with diesel and tested in a constant volume chamber.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Combustion and Emissions Performance of a Spark Ignition Engine Fueled with Water Containing Acetone-Butanol-Ethanol and Gasoline Blends

2015-04-14
2015-01-0908
Butanol has proved to be a very promising alternative fuel in recent years. The production of bio-butanol, typically done using the acetone-butanol-ethanol (ABE) fermentation process is expensive and consumes a lot of energy. Hence it is of interest to study the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. The combustion and emissions performance of ABE29.5W0.5 (29.5 vol.% ABE, 0.5 vol.% water and gasoline blend), ABE30 (30 vol.% ABE and gasoline blend) and ABE0 (pure gasoline) were investigated in this study. The results showed that ABE29.5W0.5 enhanced engine torque by 9.6%-12.7% and brake thermal efficiency (BTE) by 5.2%-11.6% compared to pure gasoline, respectively. ABE29.5W0.5 also showed similar brake specific fuel consumption (BSFC) relative to pure gasoline.
Technical Paper

Comparative Study of High-Alcohol-Content Gasoline Blends in an SI Engine

2015-04-14
2015-01-0891
Ethanol is the most widely used renewable fuel in the world now. Compared to ethanol, butanol is another very promising renewable fuel for internal combustion engines. It is less corrosive, and has higher energy density, lower vapor pressure and lower solubility in water. However, the use of Acetone-Butanol-Ethanol (ABE), an intermediate product in ABE fermentation, presents a cost advantage over ethanol and butanol and has attracted much attention recently. In this study, three high-alcohol-content gasoline blends (85% vol. of ethanol, butanol and ABE, referred as E85, B85 and ABE85, respectively) were investigated in a port-injection spark-ignition engine. ABE has a component ratio of 3:6:1. In addition, pure gasoline was also tested as a baseline for comparison. All fuels were tested under the same conditions (1200 RPM, Φ = 0.83−1.25, BMEP = 3 bar).
Technical Paper

Computational Study of the Equivalence Ratio Distribution from a Diesel Pilot Injection with Different Piston Geometry, Injection Timing and Velocity Initialization in a HSDI Engine

2014-04-01
2014-01-1110
In the new combustion strategies such as RCCI and dual-fuel combustion, the diesel pilot injection plays a pivotal role as it determines the ignition characteristics of the mixture and ultimately the combustion and emission performance. In this regard, equivalence ratio distribution resulted from the pilot injection becomes very important. In this work, computation study is carried out using KIVA-3V to simulate the engine compression stroke from intake valve close (IVC) to close to TDC so as to investigate the impact of piston geometry, injection start timing and flow initialization on the equivalence ratio distribution from a pilot injection in HSDI engine.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

Different Percentage of Acetone-Butanol-Ethanol (ABE) and Diesel Blends at Low Temperature Condition in a Constant Volume Chamber

2014-04-01
2014-01-1257
The purpose of this study is to investigate the possibility of acetone-butanol-ethanol (ABE) blended with diesel without further component recovery which has high costs blocking the industrial-scale production of bio-butanol. The combustion characteristics of ABE and diesel blends were studied in a constant volume chamber. In this study, 50% and 80% vol. ABE (without water) were mixed with diesel and the vol. % of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The in-cylinder pressure was recorded using a pressure transducer and the time-resolved natural luminosity was captured by high speed imaging. Combustion visualization using laser diagnostics would provide crucial fundamental information of the fuel's combustion characteristics. With the different percentage of the ABE blended in the diesel, the soot oxidation, the ignition delay and the soot lift-off length were studied in this work.
Technical Paper

Effect of Acetone-Gasoline Blend Ratio on Combustion and Emissions Characteristics in a Spark-Ignition Engine

2017-03-28
2017-01-0870
Due to the increasing consumption of fossil fuels, alternative fuels in internal combustion engines have attracted a lot of attention in recent years. Ethanol is the most common alternative fuel used in spark ignition (SI) engines due to its advantages of biodegradability, positively impacting emissions reduction as well as octane number improvement. Meanwhile, acetone is well-known as one of the industrial waste solvents for synthetic fibers and most plastic materials. In comparison to ethanol, acetone has a number of more desirable properties for being a viable alternative fuel such as its higher energy density, heating value and volatility.
Technical Paper

Effect of Injection Parameters and EGR on the Particle Size Distributions and Exhaust Emissions for Diesel and Biodiesel Fuels in CRDI Engine

2014-04-01
2014-01-1612
Biodiesel is considered one of the most promising alternative fuels to petrol fuels. In this study, an attempt has been made to investigate and compare the effect of fuel injection pressure, injection timing, and exhaust gas recirculation (EGR) ratio on the particle size distributions and exhaust emissions of the diesel and biodiesel produced from waste cooking oil (WCO) used in a common rail direct injection (CRDI) diesel engine. The engine tests were conducted at two injection pressures (800 and 1600 bar), two injection timings (25 and 5 deg before top dead center (bTDC) and three EGR ratios (10%, 20% 30%) at a constant fuel injection energy per stroke and engine speed (1200 r/min). The results indicated that carbon monoxide (CO) and hydrocarbon (HC) emissions of biodiesel were slightly lower, but nitrogen oxide (NOx) emissions were slightly higher, than those of diesel fuel under most operating conditions.
Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
Technical Paper

Effects of Injection Pressure on Low-sooting Combustion in an Optical HSDI Diesel Engine Using a Narrow Angle Injector

2010-04-12
2010-01-0339
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine equipped with a Bosch common rail injection system was used to study effects of injection pressures on the in-cylinder spray and combustion processes. An injector with an injection angle of 70 degrees and European low sulfur diesel fuel (cetane number 54) were used in the work. The operating load was 2.0 bar IMEP with no EGR added in the intake. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern. Two-stage low temperature reaction was seen for early injection timings.
Technical Paper

Emissions Characteristics of Neat Butanol Fuel Using a Port Fuel-Injected, Spark-Ignition Engine

2011-04-12
2011-01-0902
An experimental investigation was conducted using a Ford single-cylinder spark-ignition research engine to compare the performance and emissions of neat n-butanol fuel to that of gasoline and ethanol. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxide ere used to compare the three fuels in terms of combustion byproducts. It was found that gasoline and butanol are closest in engine performance with butanol producing slightly less brake torque. Exhaust gas temperature and nitrogen oxide measurements show that butanol combusts at a lower peak temperature. Of particular interest were the emissions of unburned hydrocarbons which were between two and three times those of gasoline suggesting that butanol is not atomizing as effectively as gasoline and ethanol.
Technical Paper

Experimental Evaluation of Electrostatically Assisted Injection and Combustion of Ethanol-Gasoline Mixtures for Automotive Applications

2010-04-12
2010-01-0171
A single nozzle port fuel injector was modified to apply electrostatic charge to the fuel stream, with the intention of studying electrostatically assisted sprays in a practical, port-injected engine. The modifications were kept external to the injector and involved placing an electrode and insulating liner over the tip of the injector. The performance of the modified injector, which combined pressure driven and electrostatic atomization, was characterized in three phases: the injector sprays themselves were studied, combustion of charged fuel droplets was studied, and the injector was installed and tested on a single cylinder spark ignition engine. In the first phase, Fraunhofer diffraction measurements of droplet size, and particle image velocimetry measurements of droplet velocity were performed. The charge transferred by the sprays was measured using an electrometer, and typical forces exerted on droplets in the sprays were estimated.
Technical Paper

Experimental Study on Performance and Emission of Acetone-Ethanol and Gasoline Blends in a PFI Spark Ignition Engine

2016-04-05
2016-01-0833
To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
Technical Paper

Experimental and Numerical Investigation of Soot Mechanism of Acetone-Butanol-Ethanol (ABE) with Various Oxygen Concentrations

2015-04-14
2015-01-0389
A multi-step acetone-butanol-ethanol (ABE) phenomenological soot model was proposed and implemented into KIVA-3V Release 2 code. Experiments were conducted in an optical constant volume combustion chamber to investigate the combustion and soot emission characteristics under the conditions of 1000 K initial temperature with various oxygen concentrations (21%, 16%, 11%). Multi-dimensional computational fluid dynamics (CFD) simulations were conducted in conjunction under the same operation conditions. The predicted soot mass traces showed good agreement with experimental data. As ambient oxygen decreased from 21% to 11%, ignition delay retarded and the distribution of temperature became more homogenous. Compared to 21% ambient oxygen, the peak value of total soot mass at 16% oxygen concentration was higher due to the suppressed soot oxidation mechanism.
Technical Paper

High-Load Compression-Ignition Engine Emissions Reduction with Inverted Phi-Sensitivity Fuel Using Multiple Injection Strategies

2019-04-02
2019-01-0554
Inverted phi (ϕ)-sensitivity is a new approach of NOx reduction in compression-ignition (C.I.) engines. Previously, pure ethanol (E100) was selected as the preliminary test fuel in a single injection compression-ignition engine, and was shown to have good potential for low engine-out NOx emissions under low and medium load conditions due to its inverted ignition sequence. Under high load, however, the near-stoichiometric and non-homogeneous fuel/air distribution removes the effectiveness of the inverted ϕ-sensitivity. Therefore, it is desirable to recover the combustion sequence in the chamber such that the leaner region is burned before the near-stoichiometric region. When the combustion in near-stoichiometric region is inhibited, the temperature rise of that region is hindered and the formation of NOx is suppressed.
Technical Paper

Investigating the Impact of Acetone on the Performance and Emissions of Acetone-Butanol-Ethanol (ABE) and Gasoline Blends in an SI Engine

2015-04-14
2015-01-0909
Alcohols, especially n-butanol, have received a lot of attention as potential fuels and have shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. ABE, the intermediate product in the ABE fermentation process for producing bio-butanol, is being studied as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly.
X