Refine Your Search

Search Results

Technical Paper

A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines

2002-03-04
2002-01-1309
Two fundamental aspects of HCCI engine combustion have been investigated using a single-zone model with time-varying compression and the full chemical-kinetic mechanisms for iso-octane, a representative liquid-phase fuel. This approach allows effects of the kinetics and thermodynamics to be isolated and evaluated in a well-characterized manner, providing an understanding of the selected fundamental processes. The computations were made using the CHEMKIN-III kinetic-rate code for an 1800 rpm operating condition. The study consists of two parts. First, low-load HCCI operation was investigated to determine the role of bulk-gas reactions as a source for HC and CO emissions. The computations show that as fueling is reduced to equivalence ratios of 0.15 and lower (very light load and idle), the bulk-gas reactions do not go to completion, leading to inefficient combustion and high emissions of HC and CO.
Technical Paper

A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*

1997-02-24
970873
A phenomenological description, or “conceptual model,” of how direct-injection (DI) diesel combustion occurs has been derived from laser-sheet imaging and other recent optical data. To provide background, the most relevant of the recent imaging data of the author and co-workers are presented and discussed, as are the relationships between the various imaging measurements. Where appropriate, other supporting data from the literature is also discussed. Then, this combined information is summarized in a series of idealized schematics that depict the combustion process for a typical, modern-diesel-engine condition. The schematics incorporate virtually all of the information provided by our recent imaging data including: liquid- and vapor-fuel zones, fuel/air mixing, autoignition, reaction zones, and soot distributions.
Technical Paper

A Parametric Study of HCCI Combustion - the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection

2003-03-03
2003-01-0752
A combined experimental and modeling study has been conducted to investigate the sources of CO and HC emissions (and the associated combustion inefficiencies) at low-loads. Engine performance and emissions were evaluated as fueling was reduced from knocking conditions to very low loads (ϕ = 0.28 - 0.04) for a variety of operating conditions, including: various intake temperatures, engine speeds, compression ratios, and a comparison of fully premixed and GDI (gasoline-type direct injection) fueling. The experiments were conducted in a single-cylinder engine (0.98 liters) using iso-octane as the fuel. Comparative computations were made using a single-zone model with the full chemistry mechanisms for iso-octane, to determine the expected behavior of the bulk-gases for the limiting case of no heat transfer, crevices, or charge inhomogeneities.
Technical Paper

An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines

2004-06-08
2004-01-1900
Combustion phasing is one important issue that must be addressed for HCCI operation. The intake temperature can be adjusted to achieve ignition at the desired crank angle. However, heat-transfer during induction will make the effective intake temperature different from the temperature measured in the runner. Also, depending on the engine speed and port configuration, dynamic flow effects cause various degrees of charge heating. Additionally, residuals from the previous cycle can have significant influence on the charge temperature at the beginning of the compression stroke. Finally, direct injection of fuel will influence the charge temperature since heat is needed for vaporization. This study investigates these effects in a systematic manner with a combination of experiment and cycle simulation using WAVE from Ricardo.
Journal Article

Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline

2010-04-12
2010-01-1086
The potential of boosted HCCI for achieving high loads has been investigated for intake pressures (Piⁿ) from 100 kPa (naturally aspirated) to 325 kPa absolute. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) equipped with a compression-ratio 14 piston at 1200 rpm. The intake charge was fully premixed well upstream of the intake, and the fuel was a research-grade (R+M)/2 = 87-octane gasoline with a composition typical of commercial gasolines. Beginning with Piⁿ = 100 kPa, the intake pressure was systematically increased in steps of 20 - 40 kPa, and for each Piⁿ, the fueling was incrementally increased up to the knock/stability limit, beyond which slight changes in combustion conditions can lead to strong knocking or misfire. A combination of reduced intake temperature and cooled EGR was used to compensate for the pressure-induced enhancement of autoignition and to provide sufficient combustion-phasing retard to control knock.
Technical Paper

Chemiluminescence Imaging of Autoignition in a DI Diesel Engine

1998-10-19
982685
Chemiluminescence imaging has been applied to a parametric investigation of diesel autoignition. Time-resolved images of the natural light emission were made in an optically accessible DI diesel engine of the heavy-duty size class using an intensified CCD video camera. Measurements were obtained at a base operating condition, corresponding to a motored TDC temperature and density of 992 K and 16.6 kg/m3, and for TDC temperatures and densities above and below these values. Data were taken with a 42.5 cetane number blend of the diesel reference fuels for all conditions, and measurements were also made with no. 2 diesel fuel (D2) at the base condition. For each condition, temporal sequences of images were acquired from the time of first detectable chemiluminescence up through fully sooting combustion, and the images were analyzed to obtain quantitative measurements of the average emission intensity.
Technical Paper

Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

2005-10-24
2005-01-3741
Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1328 species and 5835 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation.
Journal Article

Detailed HCCI Exhaust Speciation and the Sources of Hydrocarbon and Oxygenated Hydrocarbon Emissions

2008-04-14
2008-01-0053
Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (ϕ) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of ϕ = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDC-compression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde.
Technical Paper

Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release

2012-04-16
2012-01-1109
The combustion behavior of conventional gasoline has been numerically investigated by means of detailed chemical-kinetic modeling simulations, with particular emphasis on analyzing the chemistry of the intermediate temperature heat release (ITHR). Previous experimental work on highly boosted (up to 325 kPa absolute) HCCI combustion of gasoline (SAE 2020-01-1086) showed a steady increase in the charge temperature up to the point of hot ignition, even for conditions where the ignition point was retarded well after top dead center (TDC). Thus, sufficient energy was being released by early pre-ignition reactions resulting in temperature rise during the early part of the expansion stroke This behavior is associated with a slow pre-ignition heat release (ITHR), which is critical to keep the engine from misfiring at the very late combustion phasings required to prevent knock at high-load boosted conditions.
Journal Article

Detailed Kinetic Modeling of HCCI Combustion with Isopentanol

2011-09-11
2011-24-0023
Isopentanol is an advanced biofuel that can be produced by micro-organisms through genetically engineered metabolic pathways. Compared to the more frequently studied ethanol, isopentanol's molecular structure has a longer carbon chain and includes a methyl branch. Its volumetric energy density is over 30% higher than ethanol, and it is less hygroscopic. Some fundamental combustion properties of isopentanol in an HCCI engine have been characterized in a recent study by Yang and Dec (SAE 2010-01-2164). They found that for typical HCCI operating conditions, isopentanol lacks two-stage ignition properties, yet it has a higher HCCI reactivity than gasoline. The amount of intermediate temperature heat release (ITHR) is an important fuel property, and having sufficient ITHR is critical for HCCI operation without knock at high loads using intake-pressure boosting. Isopentanol shows considerable ITHR, and the amount of ITHR increases with boost, similar to gasoline.
Technical Paper

Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine

2009-06-15
2009-01-1806
Now more than ever, the increasing strictness of environmental regulation and the stronger need of higher efficiency standards are pushing for the development of cleaner and energy-efficient powertrains. HCCI engines are suitable candidates to achieve these objectives. Understanding the autoignition process and how it is affected by operating conditions is central to the development of these engines. In addition to experiments, detailed kinetic modeling represents a very effective tool for gaining deeper insight into the fundamentals of HCCI autoignition and combustion. Indeed, modeling activities are today widely used in engine design, allowing a significant reduction in prototype development costs and providing a valuable support to the improvement of control strategies.
Technical Paper

Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, And Empirical Validation

1999-03-01
1999-01-0509
This paper proposes a structure for the diesel combustion process based on a combination of previously published and new results. Processes are analyzed with proven chemical kinetic models and validated with data from production-like direct injection diesel engines. The analysis provides new insight into the ignition and particulate formation processes, which combined with laser diagnostics, delineates the two-stage nature of combustion in diesel engines. Data are presented to quantify events occurring during the ignition and initial combustion processes that form soot precursors. A framework is also proposed for understanding the heat release and emission formation processes.
Technical Paper

Diesel Engine Combustion Modeling Using the Coherent Flame Model in Kiva-II

1993-03-01
930074
A flamelet model is used to calculate combustion in a diesel engine, and the results are compared to experimental data available from an optically accessible, direct-injection diesel research engine. The 3∼D time-dependent Kiva-II code is used for the calculations, the standard Arrhenius combustion model being replaced by an ignition model and the coherent flame model for turbulent combustion. The ignition model is a four-step mechanism developed for heavy hydrocarbons which has been previously used for diesel combustion. The turbulent combustion model is a flamelet model developed from the basic ideas of Marble and Broadwell. This model considers local regions of the turbulent flame front as interfaces called flamelets which separate fuel and oxidizer in the case of a diffusion flame. These flamelets are accounted for by solving a transport equation for the flame surface density, i.e., the flame area per unit volume.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release over Wide Ranges of Engine Speed

2007-01-23
2007-01-0051
Reaching for higher loads and improving combustion-phasing control are important challenges for HCCI research. Although HCCI engines can operate with a variety of fuels, recent research has shown that fuels with two-stage autoignition have some significant advantages for overcoming these challenges. Because the amount of low-temperature heat release (LTHR) is proportional to the local equivalence ratio (ϕ), fuel stratification can be used to adjust the combustion phasing (CA50) and/or burn duration using various fuel-injection strategies. Two-stage ignition fuels also allow stable combustion even for extensive combustion-phasing retard, which reduces the knocking propensity. Finally, the LTHR reduces the required intake temperature, which increases the inducted charge mass for a given intake pressure, allowing higher fueling rates before knocking and NOx emissions become a problem. However, the amount of LTHR is normally highly dependent on the engine speed.
Journal Article

Effect of Ignition Improvers on the Combustion Performance of Regular-Grade E10 Gasoline in an HCCI Engine

2014-04-01
2014-01-1282
This study explores the use of two conventional ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), to enhance the autoignition of the regular gasoline in an homogeneous charge compression ignition (HCCI) engine at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm. The results showed that both EHN and DTBP are very effective for reducing the intake temperature (Tin) required for autoignition and for enhancing stability to allow a higher charge-mass fuel/air equivalence ratio (ϕm). On the other hand, the addition of these additives can also make the gasoline too reactive at some conditions, so significant exhaust gas recirculation (EGR) is required at these conditions to maintain the desired combustion phasing. Thus, there is a trade-off between improving stability and reducing the oxygen available for combustion when using ignition improvers to extend the high-load limit.
Technical Paper

Effects of Fuel Parameters and Diffusion Flame Lift-Off on Soot Formation in a Heavy-Duty DI Diesel Engine

2002-03-04
2002-01-0889
To better understand the factors affecting soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured in a heavy-duty, direct-injection diesel engine. Measurements were obtained at two operating conditions using two commercial diesel fuels and a range of oxygenated paraffinic fuel blends. A line-of-sight laser extinction diagnostic was improved and employed to measure the relative soot concentration within the jet (“jet-soot”) and the rates of soot-wall deposition on the piston bowl-rim. An OH chemiluminescence imaging technique was developed to determine the location of the diffusion flame and to measure the lift-off lengths of the diffusion flame to estimate the amount of oxygen entrainment in the diesel jets. Both the jet-soot and the rate of soot-wall deposition were found to decrease with increasing fuel oxygen-to-carbon ratio (O/C) over a wide range of O/C.
Technical Paper

Extinction Measurements of In-Cylinder Soot Deposition in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1296
The combustion process in diesel engines deposits soot on the in-cylinder surfaces. Previous works have suggested that these soot deposits eventually break off during cylinder blow-down and the exhaust stroke and contribute significantly to exhaust soot emissions. In order to better understand this potential pathway to soot emissions, the authors recently investigated combusting fuel-jet/wall interactions in a diesel engine. This work, published as a companion paper, showed how soot escaped from the combusting fuel jet and was brought in close proximity to the wall so that it could become a deposit. The current study extends this earlier work with laser-extinction measurements of the soot-deposition rate in the same single-cylinder, heavy-duty DI diesel engine. Measurements were made by passing the beam of a CW-diode laser through a window in the piston bowl rim that was in-line with one of the fuel jets.
Technical Paper

Ignition and Early Soot Formation in a DI Diesel Engine Using Multiple 2-D Imaging Diagnostics*

1995-02-01
950456
A combination of optical imaging diagnostics has been applied to the fuel jet of a direct-injection diesel engine to study the ignition and early soot formation processes. Measurements were made in an optically accessible direct-injection diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. Two fuels were used, a 42.5 cetane number mixture of the diesel reference fuels and a new low-sooting fuel (needed to reduce optical attenuation at later crank angles) that closely matches both the cetane number and boiling point of the reference fuel mixture. The combustion and soot formation processes are found to be almost identical for both fuels. Ignition and early combustion were studied by imaging the natural chemiluminescence using a calibrated intensified video camera. The early soot development was investigated via luminosity imaging and simultaneous planar imaging of laser-induced incandescence (LII) and elastic scattering.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
X