Refine Your Search

Topic

Search Results

Standard

APPLICATION TESTING OF OIL TO AIR OIL COOLERS FOR COOLING PERFORMANCE

1985-11-01
HISTORICAL
J1468_198511
This Recommended Practice is applicable to oil to air oil coolers installed on mobile or stationary equipment. This document outlines the method of procuring the test data to determine operating characteristics of the oil cooling system and the interpretation of the test results.
Standard

APPLICATION TESTING OF OIL-TO-AIR OIL COOLERS FOR COOLING PERFORMANCE

1993-05-20
HISTORICAL
J1468_199305
This SAE Recommended Practice is applicable to oil-to-air oil coolers installed on mobile or stationary equipment. This document outlines the method of procuring the test data to determine operating characteristics of the oil cooling system and the interpretation of the test results.
Standard

COOLANT CONCENTRATE (LOW SILICATE, ETHYLENE GLYCOL TYPE REQUIRING AN INITIAL CHARGE OF SUPPLEMENTAL COOLANT ADDITIVE) FOR HEAVY-DUTY ENGINES

1990-04-01
HISTORICAL
J1941_199004
This SAE Recommended Practice applies to engine coolant concentrate, low silicate ethylene glycol base, for use in cooling systems of heavy-duty engines. An initial charge of supplemental coolant additive (SCA) is required when using this type of coolant concentrate. This document applies to engine coolant concentrates for heavy-duty engine requirements. SAE J1034 applies to coolant concentrates for automobile and light truck applications. For further information on engine coolants, see SAE J814.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2019-09-05
CURRENT
J1726_201909
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2010-02-15
HISTORICAL
J1726_201002
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2015-07-01
HISTORICAL
J1726_201507
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Coolants for Internal Combustion Engines

2018-03-29
HISTORICAL
J814_201803
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D3306 and ASTM D4985.
Standard

Coolants for Internal Combustion Engines

2013-07-09
HISTORICAL
J814_201307
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D 3306 and ASTM D 4985.
Standard

ENGINE COOLANT CONCENTRATE - ETHYLENE-GLYCOL TYPE

1988-07-01
HISTORICAL
J1034_198807
This standard covers glycol-type compounds which, when added to engine cooling systems at concentrations of 50 - 70% by volume of coolant concentrate in water, provide corrosion protection, lower the freezing point, and raise the boiling point of the coolant. Such compounds are intended for a minimum of 1 year (approximately 12 000 miles) service in a properly maintained cooling system. (Reference: SAE HS-40, Maintenance of Automotive Engine Cooling. Systems.) Coolants meeting this standard do not require the use of supplementary materials. For additional information on engine coolants, see SAE J814. Heavy-duty non-automotive and heavy-duty diesel engine coolant maintenance may require different measurement and test parameters due to differences in engine design and materials, and high mileage service requirements.
Standard

ENGINE COOLANT CONCENTRATE—ETHYLENE-GLYCOL TYPE

1973-06-01
HISTORICAL
J1034_197306
This standard covers glycol-type compounds which, when added to engine cooling systems at concentrations of 40-70% by volume of coolant concentrate in water, provide corrosion protection, lower the freezing point, and raise the boiling point of the coolant. Such compounds are intended for a minimum of 1 year (approximately 12,000 miles) service in a properly maintained cooling system. (Reference: SAE HS-40, Maintenance of Automotive Engine Cooling Systems.) Coolants meeting this standard do not require the use of supplementary materials. For additional information on engine coolants, see SAE J814.
Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2011-11-02
HISTORICAL
J2914_201111
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2022-11-22
CURRENT
J2914_202211
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of selectively cooled exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of nitrogen oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2016-08-23
HISTORICAL
J2914_201608
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Standard

Glossary of Engine Cooling System Terms

2019-04-22
HISTORICAL
J1004_201904
The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems. Components included are all those through which engine coolant is circulated: water pump, engine oil cooler, transmission and other coolant-oil coolers, charge air coolers, core engine, thermostat, radiator, external coolant tanks, and lines connecting them.
Standard

Glossary of Engine Cooling System Terms

2014-02-07
HISTORICAL
J1004_201402
The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems. Components included are all those through which engine coolant is circulated: water pump, engine oil cooler, transmission and other coolant-oil coolers, charge air coolers, core engine, thermostat, radiator, external coolant tanks, and lines connecting them.
Standard

HEAVY DUTY NON-METALLIC ENGINE COOLING FANS—MATERIAL, MANUFACTURING AND TEST CONSIDERATIONS

1985-01-01
HISTORICAL
J1474_198501
All materials classified as nylons share certain basic characteristics. However, even within the seemingly limited realm of glass fiber reinforced nylons, many levels and combinations of physical, thermal, and environmental resistance properties are available. These properties result from such factors as the following: 1 Type of nylon (6, 6/6, 6/10, 6/12, etc.) 2 Percentage (by weight) of glass fibers 3 Diameter and length of glass fibers 4 Wetting agent used to promote adhesion between resin and fibers (if present) 5 Heat stabilizer (if present) 6 Impact modifier (if present) 7 Pigmentation (if present) In order to select a material with appropriate characteristics, the prospective manufacturer and end user should investigate the proposed application thoroughly, and maintain open communication with the various material suppliers.
Standard

HEAVY-DUTY NONMETALLIC ENGINE COOLING FANS—MATERIAL, MANUFACTURING, AND TEST CONSIDERATIONS

1995-06-01
HISTORICAL
J1474_199506
The following topics are included in this report: Section 2—References Section 3—Definitions Section 4—Material Selection Section 5—Production Considerations Section 6—Initial Structural Integrity Section 7—In-Vehicle Testing Section 8—Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by Section 3 of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by Section 4 of SAE J1390.
X