Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench

2017-03-28
2017-01-0604
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation is among the main objectives of engine development. Simultaneously the development costs and development time have to be steadily reduced. For these reasons, the high demands in terms of quality and validity of measurements at the engine test bench are continuously rising. This paper will present a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion-relevant component setups. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements.
Technical Paper

Cetane Number Determination by Advanced Fuel Ignition Delay Analysis in a New Constant Volume Combustion Chamber

2015-04-14
2015-01-0798
A new constant volume combustion chamber (CVCC) apparatus is presented that calculates the cetane number (CN) of fuels from their ignition delay by means of a primary reference fuel calibration. It offers the benefits of low fuel consumption, suitability for non-lubricating substances, accurate and fast measurements and a calibration by primary reference fuels (PRF). The injection system is derived from a modern common-rail passenger car engine. The apparatus is capable of fuel injection pressures up to 1200 bar and requires only 40 ml of the test fuel. The constant volume combustion chamber can be heated up to 1000 K and pressurized up to 50 bar. Sample selection is fully automated for independent operation and low levels of operator involvement. Capillary tubes employed in the sampling system can be heated to allow the measurement of highly viscous fuels.
Technical Paper

Comparison of Promising Sustainable C1-Fuels Methanol, Dimethyl Carbonate, and Methyl Formate in a DISI Single-Cylinder Light Vehicle Gasoline Engine

2021-09-21
2021-01-1204
On the way to a climate-neutral mobility, synthetic fuels with their potential of CO2-neutral production are currently in the focus of internal combustion research. In this study, the C1-fuels methanol (MeOH), dimethyl carbonate (DMC), and methyl formate (MeFo) are tested as pure fuel mixtures and as blend components for gasoline. The study was performed on a single-cylinder engine in two configurations, thermodynamic and optical. As pure C1-fuels, the previously investigated DMC/MeFo mixture is compared with a mixture of MeOH/MeFo. DMC is replaced by MeOH because of its benefits regarding laminar flame speed, ignition limits and production costs. MeOH/MeFo offers favorable particle number (PN) emissions at a cooling water temperature of 40 °C and in high load operating points. However, a slight increase of NOx emissions related to DMC/MeFo was observed. Both mixtures show no sensitivity in PN emissions for rich combustions. This was also verified with help of the optical engine.
Technical Paper

Development of a Hydraulic Hybrid System for Urban Traffic

2013-04-08
2013-01-1479
The development of today's powertrains focuses on the reduction of CO₂ emissions. Therefore several new technologies for internal combustion engines have been established. A further tendency is the successive electrification of powertrains in hybrid vehicles. However, these trends lead to increasing system costs which are a very important aspect at the market segment of compact cars. At the Institute of Internal Combustion Engines of the Technical University of Munich a drivetrain concept for urban and commuter traffic is under development. It is based on a lean-burn air-cooled two-cylinder natural gas engine which is combined with a hydraulic hybrid system. The paper contains detailed information about the engine as well as the hybrid vehicle powertrain in parallel structure. Particular characteristics and innovations of the hydraulic hybrid system compared to systems known so far are shown.
Technical Paper

Engine Operation Strategies for the Alternative Diesel Fuel Oxymethylene Ether (OME): Evaluation Based on Injection Rate Analyzer and 0D-/1D-Simulation

2021-09-21
2021-01-1190
Polyoxymethylene dimethyl ethers (OME) are promising alternative diesel fuels with a biogenic or electricity-based production, which offer carbon neutral mobility with internal combustion engines. Among other e-fuels, they stand out because of soot-free combustion, which resolves the trade-off between nitrogen oxide (NOx) and soot emissions. Additionally, long-chain OME have a high ignitability, indicated by a cetane number (CN) greater than 70. This opens up degrees of freedom in the injection strategy and enables simplifications compared to the operation with fossil diesel. This study investigates the hydraulic behavior of two solenoid injectors with different injector geometry for heavy-duty applications on an Injection Rate Analyzer (IRA) in diesel and OME operation. For OME, both injectors show longer injection delays in all injection pressure ranges investigated, increasing with rail pressure.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Journal Article

Identification of In-Cylinder Aerosol Flow Induced Emissions due to Piston Ring Design in a DISI Single Cylinder LV Engine Using Oxygenated Synthetic Fuels

2021-04-06
2021-01-0625
In the near future, pollutant and GHG emission regulations in the transport sector will become increasingly stringent. For this reason, there are many studies in the field of internal combustion research that investigate alternative fuels, one example being oxygenated fuels. Additionally, the design of engine components needs to be optimized to improve the thresholds of clean combustion and thus reduce particulates. Simulations based on PRiME 3D® for dynamic behaviors inside the piston ring group provide a guideline for experimental investigation. Gas flows into the combustion chamber are controlled by adjusting the piston ring design. A direct comparison of regular and synthetic fuels enables to separate the emissions caused by oil and fuel. This study employed a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo).
Journal Article

Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications

2015-04-14
2015-01-0866
Scarce resources of fossil fuels and increasingly stringent exhaust emission legislation push towards a stronger focus to alternative fuels. Natural gas is considered a promising solution for small engines and passenger cars due to its high availability and low carbon dioxide emissions. Furthermore, natural gas indicates great potential of increased engine efficiency at lean-burn operation. However, the ignition of these lean air/fuel mixtures leads to new challenges, which can be met by fuel scavenged prechambers. At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen an air cooled natural gas engine with a single cylinder displacement volume of 0.5 L is equipped with a methane scavenged prechamber for investigations of the combustion process under real engine conditions. The main combustion chamber is supplied with a lean premixed air/fuel mixture.
Technical Paper

Neat Oxymethylene Ethers: Combustion Performance and Emissions of OME2, OME3, OME4 and OME5 in a Single-Cylinder Diesel Engine

2020-04-14
2020-01-0805
Diesel engines are arguably the superior device in the ground transportation sector in terms of efficiency and reliability, but suffer from inferior emission performance due to the diffusive nature of diesel combustion. Great research efforts gradually reduced nitrogen oxide (NOX) and particulate matter (PM) emissions, but the PM-NOX trade-off remained to be a problem of major concern and was believed to be inevitable for a long time. In the process of engine development, the modification of fuel properties has lately gained great attention. In particular, the oxygenate fuel oxymethylene ether (OME) has proven potential to not only drastically reduce emissions, but possibly resolve the formerly inevitable trade-off completely.
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

Piston Design Optimization for a Two-Cylinder Lean-Burn Natural Gas Engine - 3D-CFD-Simulation and Test Bed Measurements

2014-04-01
2014-01-1326
The development of today's drivetrains focusses on the reduction of vehicles' CO2-emissions. Therefore, a drivetrain for urban and commuter traffic is under development at the Institute of Internal Combustion Engines. The concept is based on a lean-burn air cooled two-cylinder natural gas engine, which is combined with a hydraulic hybrid system. On the one hand, lean-burn combustion leads to low nitrogen oxides emissions and high thermal efficiency. On the other hand, there are several challenges concerning inflammability, combustion stability and combustion duration. An approach to optimize the combustion process is the design of the piston bowl. The paper presents the engine concept at first. Afterwards, a description of design parameters for pistons of natural gas engines and a technical overview of piston bowls is given. Subsequent to the analysis of the different piston bowls, a new design approach is presented.
Technical Paper

Turbocharging of a Two-cylinder Lean-Burn Natural Gas Engine with Uneven Firing Order

2014-04-01
2014-01-1652
At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen a drivetrain for urban and commuter traffic is under development. The concept is based on a lean-burn air-cooled two-cylinder natural gas engine which is combined with a hydraulic hybrid system. The engine is initially mechanically charged which results in an engine speed dependent torque. Turbocharging the natural gas fuelled engine derives increased engine torque especially at low engine speeds and exploits the potential of better knock resistance of natural gas compared to gasoline fuel. The paper presents a turbocharging concept for the two-cylinder engine at first. The firing order of 180/540°CA due to the crank shaft design and the lean-burn combustion are challenging restrictions to cope with. The consequences of the uneven firing order are investigated using 1D-simulation and the matching of the exhaust gas turbocharger is shown.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
X